首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicic acid binding, possibly at a membrane site is suggested as the first step in Si(OH)4 metabolism in the marine diatom Nitzschia angularis. We estimate 1738±133 Si(OH)4 binding sites·m-2 cell surface and a turnover of 4–12 Si(OH)4 molecules·s-1 at maximum transport velocity. All studies were carried out using 68Ge(OH)4 as a tracer for Si(OH)4.After Si(OH)4 uptake, rapid (<1 min) transformation or intracellular binding was demonstrated; yet the extractable pool size after 1 min was indicative of transport against a concentration gradient. Initial uptake kinetics were linear for 150 s and saturation kinetics were demonstrated with kinetic parameters of 560 pmol Si(OH)4·106 cells-1·min-1 (V max) 4.2 mol Si(OH)4·L-1(Ks). A metabolic energy requirement for transport was suggested by inhibition of uptake by agents that uncouple or inhibit phosphorylation; transport also was sensitive to agents that block sulfhydryl groups. Such characteristics are consistent with Si(OH)4 transport being an active carrier mediated process.Rates of Si(OH)4 transport were regulated during various growth stages and during the synchronized cell cycle. In Si(OH)4 starved cells, blocked at the initiation of silica frustule formation, cycloheximide treatment caused a rapid decline of transport rate. Blocked cells, placed in the dark, maintained high transport rates for 6 h after which there was a loss of activity during the following 18 h. Light dependent recovery of transport ability in 12 h predarkened cells was dependent on de novo protein synthesis.Abbreviations ASW artificial sea water - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DCMU 3(3,4-dichlorophenyl-1,1-dimethyl urea) - 2,4-DNP 2,4-dinitrophenol - ESWT enriched sea water with tryptone - NEM n-ethylmaleimide - pCMB p-chloromercuribenzoic acid  相似文献   

2.
Silicic acid transport was studied in the photosynthetic diatom Navicula pelliculosa (Bréb.) Hilse using [68Ge] germanic acid (68Ge(OH)4) as a tracer of silicic acid (Si(OH)4). The initial uptake rate of Si(OH)4 was dependent on cell number, pH, temperature, light and was promoted by certain monovalent cations in the medium. Na+ was more effective than K+, whereas Li+ and NH+4 were ineffective at promoting uptake. Uncouplers and inhibitors of oxidative phosphorylation and of photophosphorylation reduced uptake by 40–99% of control values. Uptake was also especially sensitive to the sulfhydryl blocking agents at 10?5 M and to the ionophorous compound valinomycin (10?7 M) which inhibited uptake by 82%. The Si(OH)4 transport system displayed Michaelis-Menten-type saturation kinetics with kinetic parameters of KS= 4.4 p. mol Si(OH)4· 1?1, Vmax= 334 pmol Si(OH)4· 106 cells?1· min?1. Calculations of the acid soluble silicic acid pool size based on 60 s uptake at 20 μM Si(OH)4 suggested that intracellular levels of Si could reach 20 mM and as much as 5 mM could exist as free silicic acid, representing maintenance of a 250-fold concentration gradient compared with the medium. Efflux from preloaded cells was dependent on temperature and the Si(OH)4 concentration of the external medium. In the presence of 100 μMM “cold” Si(OH)4, approximately 30% of the Si(OH)4 in preloaded cells was exchanged in 20 min. The initial uptake rate of Si(OH)4 in logarithmic phase cells was constant, but the uptake rate increased in a linear fashion for 6 h in stationary phase cells. These results suggest that the first step in silica mineralization by diatoms is the active transmembrane transport of Si(OH)4 by an energy dependent, saturable, membrane-carrier mechanism which requires the monovalent cations Na+ and K+ and is sensitive to sulfhydryl blocking agents. Silicic acid transport activity also appears to be regulated during different growth stages of the diatom.  相似文献   

3.
Synchronized populations of Navicula pelliculosa (Bréb.) Hilse show a 10-fold increase in Si(OH)4 transport rate during traverse through the cell division cycle. The transport activity pattern is similar to a “peak enzyme.” Kinetic analysis showed there was a significant change in Ks values, indicating increased “affinity” for Si(OH)4 as cells neared maximal uptake rates. However, the dramatic changes in transport rate at various cell cycle stages were also reflected by alterations in the Vmax, values of the transport process, suggesting a change in the number of functional transport “sites” in the plasma membrane. Cells in the wall forming stage, arrested from further development by Si(OH)4 deprivation, maintained high transport rates for as long as 7 h. The rates decreased rapidly if protein synthesis were blocked or if Si(OH)4 was added, the latter allowing the cells to traverse the rest of the cycle. The half-life of the transport activity ranged from 1.0 to 2.2 h when protein synthesis was inhibited at various cell cycle stages and during the natural decline of activity late in the cycle. The transport system appears to be metabolically unstable as is typical for a “peak protein.” The rise in transport rate through the cell cycle did not depend on the presence of Si(OH)4 in the medium; therefore, the transport system does not appear to be induced by its substrate. The rise in transport is also observed in L:D synchronized cells developing in the presence of Si(OH)4; neither does the transport system appear to be derepressed. The transport rate was strongly cell cycle-stage dependent; the data appeared to fit the “dependent pathway” model proposed by Hart-well to explain oscillations in enzyme synthesis during the cell cycle.  相似文献   

4.
Silicic acid taken up from the growth medium by Navicula pelliculosa (Bréb.) Hilse was shown to enter at least two compartments: i) soluble pools; ii) insoluble fraction comprised predominantly of the silica frustule. Soluble Si pools were extracted by a variety of agents from cells uniformly labeled for ten generations in medium containing 68Ge-Si(OH)4. 100 C water soluble and 0 C perchloric acid (PCA) soluble Si pools of 680 mM Si·l?1 and 490 mM Si·l?1 cell water represented 13 and 9%, respectively, of total, cell Si in exponential growth phase cells. Uniformly labeled cells synchronized by the combined synchronization technique accumulate at the cell cycle stage where silica frustule development is initiated. These cells contain water and PCA soluble pools of 10 nmol Si·106 cells?1 and-8.8 nmol Si·106 cells?1, respectively. On addition of Si(OH)4, a rapid uptake ensues allowing the Si pool to expand 2.5-fold, apparently to provide precursors of the silica frustule.  相似文献   

5.
The effect of Si(OH)4 on Cr toxicity and elemental concentrations in ryegrass were investigated in a growth chamber using an acid and a neutral mineral soil. Each soil was treated with 50 mg Cr, as CrO3, kg−1 soil dry weight, singly, or in combination with 25 mg Si as Si(OH)4. Plants growing in unamended soils were used as controls. Chromium toxicity, expressed as decrease in shoot or root dry weight, was increased by the Si. This increase was accompanied by a higher Cr uptake particularly on the acid soil. The shoot and root dry weights were significantly correlated (P=1%) with the concentration of Cr, where r=−0.80 and −0.65, respectively. Uptake of Al, Cu, Fe, P and Zn did not show any consistent relationship to the magnitude of Cr toxicity.  相似文献   

6.
The supplementation of monosilicic acid [Si(OH)4] to the root growing medium is known to protect plants from toxic levels of iron (Fe), copper (Cu) and manganese (Mn), but also to mitigate deficiency of Fe and Mn. However, the physicochemical bases of these alleviating mechanisms are not fully understood. Here we applied low-T electron paramagnetic resonance (EPR) spectroscopy to examine the formation of complexes of Si(OH)4 with Mn2+, Fe3+, and Cu2+ in water and in xylem sap of cucumber (Cucumis sativus L.) grown without or with supply of Si(OH)4. EPR, which is also useful in establishing the redox state of these metals, was combined with measurements of total concentrations of metals in xylem sap by inductive coupled plasma. Our results show that Si(OH)4 forms coordination bonds with all three metals. The strongest interactions of Si(OH)4 appear to be with Cu2+ (1/1 stoichiometry) which might lead to Cu precipitation. In line with this in vitro findings, Si(OH)4 supply to cucumber resulted in dramatically lower concentration of this metal in the xylem sap. Further, it was demonstrated that Si(OH)4 supplementation causes pro-reductive changes that contribute to the maintenance of Fe and, in particular, Mn in the xylem sap in bioavailable 2+ form. Our results shed more light on the intertwined reactions between Si(OH)4 and transition metals in plant fluids (e.g. xylem sap).  相似文献   

7.
Six clones of the marine cyanobacterium Synechococcus, representing four major clades, were all found to contain significant amounts of silicon in culture. Growth rate was unaffected by silicic acid, Si(OH)4, concentration between 1 and 120 μM suggesting that Synechococcus lacks an obligate need for silicon (Si). Strains contained two major pools of Si: an aqueous soluble and an aqueous insoluble pool. Soluble pool sizes correspond to estimated intracellular dissolved Si concentrations of 2–24 mM, which would be thermodynamically unstable implying the binding of intracellular soluble Si to organic ligands. The Si content of all clones was inversely related to growth rate and increased with higher [Si(OH)4] in the growth medium. Accumulation rates showed a unique bilinear response to increasing [Si(OH)4] from 1 to 500 μM with the rate of Si acquisition increasing abruptly between 80 and 100 μM Si(OH)4. Although these linear responses imply some form of diffusion‐mediated transport, Si uptake rates at low Si (~1 μM Si) were inhibited by orthophosphate, suggesting a role of phosphate transporters in Si acquisition. Theoretical calculations imply that observed Si acquisition rates are too rapid to be supported by lipid‐solubility diffusion of Si through the plasmalemma; however, facilitated diffusion involving membrane protein channels may suffice. The data are used to construct a working model of the mechanisms governing the Si content and rate of Si acquisition in Synechococcus.  相似文献   

8.
The silicic acid uptake kinetics of diatoms were studied to provide a mechanistic explanation for previous work demonstrating both nonsaturable and Michaelis-Menten-type saturable uptake. Using (68)Ge(OH)(4) as a radiotracer for Si(OH)(4), we showed a time-dependent transition from nonsaturable to saturable uptake kinetics in multiple diatom species. In cells grown under silicon (Si)-replete conditions, Si(OH)(4) uptake was initially nonsaturable but became saturable over time. Cells prestarved for Si for 24 h exhibited immediate saturable kinetics. Data suggest nonsaturability was due to surge uptake when intracellular Si pool capacity was high, and saturability occurred when equilibrium was achieved between pool capacity and cell wall silica incorporation. In Thalassiosira pseudonana at low Si(OH)(4) concentrations, uptake followed sigmoidal kinetics, indicating regulation by an allosteric mechanism. Competition of Si(OH)(4) uptake with Ge(OH)(4) suggested uptake at low Si(OH)(4) concentrations was mediated by Si transporters. At high Si(OH)(4), competition experiments and nonsaturability indicated uptake was not carrier mediated and occurred by diffusion. Zinc did not appear to be directly involved in Si(OH)(4) uptake, in contrast to a previous suggestion. A model for Si(OH)(4) uptake in diatoms is presented that proposes two control mechanisms: active transport by Si transporters at low Si(OH)(4) and diffusional transport controlled by the capacity of intracellular pools in relation to cell wall silica incorporation at high Si(OH)(4). The model integrates kinetic and equilibrium components of diatom Si(OH)(4) uptake and consistently explains results in this and previous investigations.  相似文献   

9.
THE TRANSPORT AND FUNCTION OF SILICON IN PLANTS   总被引:11,自引:0,他引:11  
A number of lines of evidence (Mr, number of -OH groups, measured fluxes at inner mitochondrial membranes) suggest the intrinsic PSi(OH)4 of about 10-10 m s-1 in the plant cell plasmalemma. While relatively low, such a PSi(OH)4 could maintain the intracellular concentration of Si(OH)4 equal to that in the medium for a phytoplankton cell of 5 μm radius growing with a generation time of 24 h. Such passive entry could not account for SiO, precipitation such as is required for scale (Chrysophyceae) or wall (Bacillariophyceae) production in terms of either the generation of a super-saturated solution or the quantity of SiO2 required; active transport occurs at the plasmalemma (and possibly at an internal membrane) of such cells. The energy required for silicification, even in a diatom with an Si/C ratio of 0.25, is only some 2% of the total energy (as NADPH and ATP) needed for growth; the energy cost of leakage of Si(OH)4 due to the intrinsic permeability of lipid bilayers to Si(OH)4 is never more than 10% of the cost of silicification. In vascular land plants the entry of Si from the soil into the xylem can involve a flux ratio (mol Si/m3 water) that is less than (e.g. Leguminoseae) equal to (e.g. many Gramineae) or greater than (e.g. Oryza, Equisetum) the concentration (mol m-3) in the bathing solution. Even the low influx of the Leguminoseae cannot be accounted for by the ‘lipid solution’ value of PS(OH)4, but requires entry coupled (phenomenologically) to water influx with a reflexion coefficient of about 0.9. The situation in most Gramineae is described by such a coupling with a reflexion coefficient near O, while the accumulation of Si (relative to water) in Oryza and Equisetum involves an apparent reflexion coefficient which is negative, i.e. an active transport system stoichiometrically related to water flux. Even in Leguminoseae with a transpiration-stream concentration of Si(OH)4 of only 20 mmol m-3 (cf. the soil solution at 200 mmol m-3), the fact that only I % of the water in the xylem is retained in the plant means that Si(OH)4 at transpirational termini approaches saturation; super-saturation, and precipitation of SiO, occurs in Gramineae and Equisetum. SiO2 precipitation occurs mainly near transpirational termini but can also occur in the xylem vessels and endodermis of roots, for example. Si(OH)2 mobility in the phloem seems to be very restricted. The energy costs of SiO2 relative to organic compounds as structural and defensive materials are in the ratio of 1:10-1:20 (on the basis of weight of material). The relative rarity of SiO2 as a structural material is discussed in the context of the evolution of Si(OH)4-transport mechanisms.  相似文献   

10.
Cells of the giant diatom Ethmodiscus Castr. gathered from the upper 15 m were examined for O2 evolution, nitrate reductase activity (NRA), C and N composition, internal NO concentrations, , and 15NO, 15NH , and 32Si uptake in a series of cruises in the central N. Pacific gyre. The δ15N (2.56–5.09 ‰), internal NO concentrations (0.0– 11.5 mM NO), and NRA (6.7 ± 4.7 × 10−4μM NO cell −1·h−1) were consistent with recent exposure to elevated nitrate concentrations and utilization of deep NO as a primary N source. These results are similar to other diatoms that migrate vertically to the nutricline as part of their life cycle. Rate measures (Si[OH]4 uptake, NRA, and O2 evolution) indicated surface doubling times from 45 h to 75 h. Both NO and NH uptake in surface waters were low and inadequate to supply N needs at surface NO and NH concentrations. Our results suggest a partitioning in nutrient acquisition, with N acquired at depth and C and Si acquired at the surface. Doubling rates were two to three times higher than predicted from cell volume and C content models. These data are consistent with the observed elemental content being lower than expected because of the dominance of cell volume by the vacuole. Our calculations suggest that Ethmodiscus contributes little to the biogeochemistry of the upper water column via upward nutrient transport. Although reported as a paleo-upwelling indicator, thisevidence suggests that Ethmodiscus has adapted to the nutrient-poor open ocean by a vertical migration strategy and has biological characteristics inconsistent with a upwelling indicator.  相似文献   

11.
Glutamic acid was found to be growth inhibitory to a murinelymphocyte hybridoma in a concentration-dependent manner from 3to 12 mM glutamate. At 12 mM glutamate there was a 70% decreasein the specific growth rate of the cells. Attempts to alleviateinhibition or adapt cells to growth in glutamate-based mediawere unsuccessful. It is proposed that elevated glutamate levelsimpair adequate uptake of cystine, a critical amino acid for thesynthesis of glutathione. Glutathione is required by cells toprevent intracellular oxidative stress. The measured rate ofuptake of U-14C L-cystine into the cells was found to havethe following parameters: Km = 0.87 mM, Vmax = 0.9nmole/mg cell protein per min. The uptake was sodiumindependent and resembled the previously described x- ctransport system, with elevated glutamate levels causingextensive inhibition. Glutamate at a concentration of 1.4 mMcaused a 50% decrease in cystine uptake from the serum-freegrowth medium. Glutamate was taken up from the external medium(Km = 20 mM and Vmax = 12.5 nmole/mg cell protein permin) by the same transport system in a stereo specific, sodiumindependent manner. Of the amino acids examined, it was foundthat cystine and homocysteic acid were the most extensiveinhibitors of glutamate uptake and that inhibition was competitive. Metabolic profiles of the cells grown in culturescontaining enhanced glutamate levels revealed an overallincrease in net production of alanine, serine, asparagine andaspartate. A substantially increased specific consumption ofglutamate was accompanied by a decreased consumption of cystine,valine and phenylalanine.The combined kinetic and metabolic results indicate thatglutamate and cystine are taken up by the anionic transportsystem x- c. The increasing levels of glutamate in themedium result in a decreased transport of cystine by this systemdue to competitive inhibition by glutamate.  相似文献   

12.
To explore the copper uptake mechanisms by the Cu-tolerant plant Commelina communis, the contents of Cu and other metals (including Fe, Zn, and Mn) in roots were detected using atomic absorption spectrometer under transporter inhibitors, partial element deficiency, or Cu excess treatments, while distribution characters of Cu and other metals in root growth zones were investigated by synchrotron radiation X-ray fluorescence spectroscopy (SRXRF). Cu uptake was inhibited by the uncoupler DNP and P-type ATPase inhibitor Na3VO4, not by the Ca2+ ion channel inhibitor LaCl3, suggesting that Cu could probably be assimilated actively by root and be related with P-type ATPase, but not through Ca2+ ion channel. Fe or Zn deficiency could enhance Cu uptake, while 100 μM Cu inhibited Fe, Zn, and Mn accumulation in roots significantly. Metal distribution under 100 μM Cu treatment was investigated by SRXRF. High level of Cu was found in the root meristem, and higher Cu concentrations were observed in the vascular cylinder than those in the endodermis, further demonstrating the initiative Cu transport in the root of C. communis. Under excess Cu stress, most Fe was located in the epidermis, and Fe concentrations in the endodermis were higher than those in the vascular cylinder, suggesting Cu and Fe competition not only in the epidermal cells but also for the intercellular and intracellular transport in roots. Zn was present in the meristem and the vascular cylinder similar to Cu. Cu and Zn showed a similar pattern. Mn behaves as Zn does, but not like Fe.  相似文献   

13.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

14.
Cadmium inhibits iron uptake and assimilation in the coastal diatom Thalassiosira weissflogii Grun. The effect of cadmium on short term Fe uptake fits ft competitive binding model: where (Fe3+) and (Cd2++) tire the free ferric and cadmium ion concentrations, respectively. The apparent binding constant Kcds, is calculated to be ca. lO8.2M-1 compared to a Kfe of lO19 M-1. At low free ferric ion concentrations. interference of cadmium with iron transport (at pCd = 8 and pFe* < 20) results in a simultaneous decrease in growth rate and Fe accumulation to a level known 1o limit growth. Upon decreasing the free cadmium ion concentration, cells accumulate a large amount oj iron prior to resumption of normal growth. At higher free ferric ion concentrations (pFe* < 20) normal or elevated Fe quotas are absented but “luxury consumption” of iron still occurs upon reversal of toxicity. Evidence that these algae with high cellular iron quotas are effectively Fe deficient is provided by a decrease in the cytochrome f/chlorophyll a ratio and a much greater decrease in NO3- reductase activity than in aldolase activity or H14C03 assimilation. Under the conditions of this study, cadmium had little effect on Si accumulation. The transport of methylamine (an analog of NH+4) is unaffected by short term exposure to high free cadmium ion concentration but is greatly inhibited upon long term (97 h) exposure.  相似文献   

15.
Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na2SO4 had an identical effect, implicating Na+ rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na+ uptake. Phenamil caused a partial inhibition of both Cu and Na+ uptake while hypercapnia stimulated Na+ and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na+ uptake. On the basis of these results we propose a novel Na+-assisted mechanism of Cu uptake wherein the Na+ gradient stimulates an increase in the H+ concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1.  相似文献   

16.
Silicon (Si, as silicate) is involved in numerous important structure and function roles in a wide range of organisms, including man. Silicate availability influences metal concentrations within various cell and tissue types, but, as yet, clear mechanisms for such an influence have been discovered only within the diatoms and sponges. In this study, the influence of silicate on the intracellular accumulation of metals was investigated in baker's yeast (Saccharomyces cerevisiae). It was found that at concentrations up to 10 mM, silicate did not influence the growth rate of S. cerevisiae within a standard complete medium. However, an 11% growth inhibition was observed when silicate was present at 100 mM. Intracellular metal concentrations were investigated in yeast cultures grown without added silicate (−Si) or with the addition of 10 mM silicate (+Si). Decreased amounts of Co (52%), Mn (35%), and Fe (20%) were found within +Si-grown yeast cultures as compared to −Si-grown ones, whereas increased amounts of Mo (56%) and Mg (38%) were found. The amounts of Zn and K were apparently unaffected by the presence of silicon. +Si enhanced the yeast growth rate for low-Zn2+ medium, but it decreased the growth rate under conditions of a low Mg2+ medium and did not alter the growth rates in high Zn2+ and Co2+ media. +Si doubled the uptake rate of Co2+ but did not influence that of Zn2+. We propose that a possible explanation for these results is that polysilicate formation at the cell wall changes the cell wall binding capacity for metal ions. The toxicity of silicate was compared to germanium (Ge, as GeO2), a member of the same group of elements as Si (group 14). Hence, Si and Ge are chemically similar, but silicate starts to polymerize to oligomers above 5 mM, whereas Ge salts remain as monomers at such concentrations. Ge proved to be far more toxic to yeast than Si and no influence of Si on Ge toxicity was found. We propose that these results relate to differences in cellular uptake.  相似文献   

17.
Summary Thein vivo andin vitro effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on calcium uptake by isolated chick duodenal cells were studied.In vivo, 1,25-(OH)2D3 given orally to vitamin D-deficient chicks increased the initial rate of calcium uptake by cells prepared 1 hr after administration of the hormone. The rate was stimulated approximately 100%, 17 to 24 hr after repletion.In vitro, pre-incubation of 1,25-(OH)2D3 with cells from D-deficient chicks increased the cellular rate of calcium uptake in a concentration-dependent relationship. Enhancement was found with 10–15 m, was maximal at 10–13 m, and was diminished at higher (10–11 m) concentrations. Stimulation was observed after a pre-incubation period as brief as 1 hr. The potency order for vitamin D3 analogs was 1,25-(OH)2D3=1-(OH)D3>25-(OH)D3>1,24,25-(OH)3D3>24,25-(OH)2D3>D3. The maximal enhancement in calcium uptake induced by the analogs was the same, only the concentration at which the cell responded was different. The effectiveness of 1,25-(OH)2D3 was five orders of magnitude greater than D3. Kinetically, 1,25-(OH)2D3 increased theV max of calcium uptake; the affinity for calcium (K m=0.54mm) was unchanged. The enhanced uptake found after the cells were pre-incubated for 2 hr with the hormone was completely blocked by inhibitors of protein synthesis. 1,25-(OH)2D3,in vitro, also increased calcium uptake in cells isolated from D-replete chicks. The maximal rates of uptake were the same in cells from D-deficient and D-replete animals. The hormone had no effect of calcium efflux from cells. Calcium uptake in microvillar brush-border membrane vesicles was increased by 1,25-(OH)2D3. These findings suggest that thein vitro cell system described in this paper represents an appropriate model to examine the temporal relationships between 1,25-(OH)2D3 induction of calcium transport and specific biochemical correlates.  相似文献   

18.
Sulfate flux in high sodium cat red cells   总被引:2,自引:2,他引:0       下载免费PDF全文
The transport of radioactive sulfate in cat red cells has been studied. The rate constant for 35SO4 inward movement under steady-state conditions is 0.24 ± 0.02/hr. This movement was found to be sensitive to osmotic changes in cell volume and to the nature of anions in the incubation medium; it increases with increasing cell volume and decreases with decreasing cell volume. The anions SCN, NO3, and I were found to inhibit the uptake of 35SO4. Furthermore, 1-fluoro-2,4-dinitrobenzene at a concentration of 1 mM inhibits (>90%) this uptake. The inward movement of erythritol-14C shows qualitatively the same dependence on cell volume as 35SO4, but it is insensitive to the nature of the anion present in the bathing medium. It was also found that the usually observed inhibition of radioactive Na uptake by SCN in cat red cells can be reversed when cell volume is increased.  相似文献   

19.
This study investigated the transport of copper (Cu) in the gut of trout. Examination of the spatial distribution of Cu along the digestive tract and a physical characterization of the uptake process was carried out using an in vitro gut sac technique and 64Cu as a tracer. Unidirectional Cu uptake was highest in the anterior intestine followed in decreasing order by the posterior intestine, mid intestine and the stomach. Cu uptake was resistant to hypoxia and appeared to be fueled equally well by Cu(II) or Cu (I) at Cu concentrations typically found in the fluid phase of the chyme in vivo in the trout intestine. Transport demonstrated saturation kinetics (e.g. K m = 31.6 μM, J max = 17 pmol cm−2 h−1, in mid intestine) at low Cu levels representative of those measured in the chyme in vivo, with a diffusive component at higher Cu concentrations. Q 10 analysis indicated Cu uptake is via diffusion across the apical membrane and biologically mediated across the basolateral membranes of enterocytes. The presence of l-histidine but not d-histidine stimulated both Cu and Na uptake suggesting a common pathway for the transport of Cu/Na with l-histidine.  相似文献   

20.
1. 1. Anesthetic alcohols (pentanol, hexanol and heptanol) were found to increase the fluidity of red cell membrane lipids as monitored by the fluorescence depolarization of diphenylhexatriene. The relative potency of the alcohols was found to be parallel to their relative membrane/water partition coefficients.
2. 2. Hexanol had biphasic effect on erythritol uptake by simple diffusion by red cells. At concentrations less than 9 mM, hexanol had no significant effect. At concentrations greater than 9 mM, there was an approximately linear increase in erythritol permeability with increasing alcohol concentration.
3. 3. The facilitated transport of uridine was markedly inhibited by hexanol. Hexanol at 6 mM produced a 65% inhibition of uridine (4 mM) uptake. Hexanol decreased both the apparent Km and V values for the equilibrium exchange of uridine.
4. 4. The facilitated transport of galactose was only slightly inhibited by hexanol.
5. 5. Hexanol was without effect on the passive and active fluxes of Na+ and K+ in red cells with altered cation contents. Cells that were slightly depleted of K+ and cells that were highly K+-depleted were both insensitive to hexanol.
Keywords: Anesthetic alcohol; Transport; (Human erythrocyte membrane)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号