首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researchers. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to that resulting from plane-wave exposure.  相似文献   

2.
The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel monkeys under similar exposure conditions were obtained using Vitek probes. Calculations exhibit reasonable correlation with the measured data, especially for the rise in colonic temperature.  相似文献   

3.
Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.  相似文献   

4.
The generation of terahertz electromagnetic radiation when a laser pulse propagates through a low-density plasma slab is considered. It is shown that terahertz waves are excited because of the growth of a weakly damped, antisymmetric leaking mode of the plasma slab. The spectral, angular, and energy parameters of the terahertz radiation are investigated, as well as the spatiotemporal structure of the emitted waves. It is demonstrated that terahertz electromagnetic wave fields are generated most efficiently when the pulse length is comparable to the slab thickness.  相似文献   

5.
Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.  相似文献   

6.
On the basis of previous experience with biological effects of electromagnetic fields a potential effect of homogeneous sinusoidal magnetic field (50Hz, 10mT) on energy state of rat skeletal muscle was investigated. Two different total body exposures to magnetic field were selected: (1) repeated 1 hour exposure, 2 times a week for 3 months, and (2) acute 1.5 hour exposure (and the appropriate control groups). Important energy metabolites (adenosine triphosphate – ATP, creatine phosphate, creatine, lactate, pyruvate and inorganic phosphate) were analysed by enzymatic and spectroscopic methods in musculus gracilis cranialis.On the basis of the concentration of important energy metabolites the apparent Gibbs free energy of ATP hydrolysis and creatine charge was calculated. Our results demonstrate no influence of this low frequency magnetic field on the level of important energy metabolites in rat skeletal muscle. The conclusion of this study is that neither repeated exposure nor the acute exposure of rats to the sinusoidal magnetic field of given parameters has any important influence on the energy state of the skeletal muscle.  相似文献   

7.

Background  

Because the possibility of millimeter wave (MMW) exposure has increased, public concern about the health issues due to electromagnetic radiation has also increased. While many studies have been conducted for MMW exposure, the effect of dielectric permittivities on skin heating in multilayer/heterogeneous human-body models have not been adequately investigated. This is partly due to the fact that a detailed investigation of skin heating in a multilayer model by computational methods is difficult since many parameters are involved. In the present study, therefore, theoretical analyses were conducted to investigate the relationship between dielectric permittivities and MMW-induced skin heating in a one-dimensional three-layer model (skin, fat, and muscle).  相似文献   

8.
Hyperthermia has been used in conjunction with radiation and chemotherapy for cancer treatment. When using electromagnetic heating, applicators are critical components in contact with or in proximity to patients and can be the determining factor for effective and safe treatment. Tissue absorption of electromagnetic energy is determined by many factors. Three cases are shown to illustrate the complexity of microwave heating: 1) The BSD MA-151 applicator has good center heating on a muscle-only phantom as shown in the operation manual. When fat slabs of 0.25, 0.5, 1, and 2 cm thick were added, two hot spots near the periphery of the applicator were evident on all fat surfaces, exposed at 631 MHz. At 915 MHz, the heating was elongated on the surface of the models with 0.25- and 2-cm fat, and two hot spots were observed on the 0.5- and 1-cm fat surfaces. 2) Heating patterns of the Clini-Therm applicators on a muscle-only phantom, as indicated in the operations guide, are elliptical with their major axes perpendicular to the electric field. However, when a bolus is used, the elliptical pattern is parallel to the E field. 3) Heating patterns in cylindrical structures were studied with inhomogeneous models of limbs. Arm and thigh models consisting of fat, bone, and muscle material were heated with Clini-Therm L, M, and MS applicators at 915 MHz. In addition to the geometric effect, the results indicated that placing the applicators with E field parallel to the long axis of cylindrical structures can minimize required power, produce less heating of fats and reduce stray radiation. In conclusion, to apply penetrating microwave or other RF fields for tissue heating, one must simulate the clinical exposure conditions as closely as possible to obtain useful heating patterns.  相似文献   

9.
Lean-type Pekin duck is a commercial breed that has been obtained through long-term selection. Investigation of the differentially expressed genes in breast muscle and skin fat at different developmental stages will contribute to a comprehensive understanding of the potential mechanisms underlying the lean-type Pekin duck phenotype. In the present study, RNA-seq was performed on breast muscle and skin fat at 2-, 4- and 6-weeks of age. More than 89% of the annotated duck genes were covered by our RNA-seq dataset. Thousands of differentially expressed genes, including many important genes involved in the regulation of muscle development and fat deposition, were detected through comparison of the expression levels in the muscle and skin fat of the same time point, or the same tissue at different time points. KEGG pathway analysis showed that the differentially expressed genes clustered significantly in many muscle development and fat deposition related pathways such as MAPK signaling pathway, PPAR signaling pathway, Calcium signaling pathway, Fat digestion and absorption, and TGF-beta signaling pathway. The results presented here could provide a basis for further investigation of the mechanisms involved in muscle development and fat deposition in Pekin duck.  相似文献   

10.
With different prevalence in different regions, radio frequency (RF) electromagnetic fields (EMF) are widely used for therapeutic tissue heating. Although short‐wave diathermy (27.12 MHz) is the most popular treatment modality, quantitative data on patient's exposure have been lacking. By numerical simulation with the numerical anatomical model NORMAN, intracorporal distributions of specific absorption rates (SAR) were investigated for different treatment scenarios and applicators. Quantitative data are provided for exposures of target treatment areas as well as for vulnerable regions such as the eye lenses, central nervous system, and testes. Different applicators and distances were investigated. Capacitive and inductive applicators exhibit quite a different heating efficiency. It could be shown that for the same output power therapeutic heat deposition can vary by almost one order of magnitude. By mimicking therapist's practice to use patient's heat perception as an indicator for output power setting, numerical data were elaborated demonstrating that muscle tissue exposures may be several times higher for inductive than for capacitive applicators. Presented quantitative data serve as a guide for power adjustment preventing relevant overexposures without compromising therapy; they also provide a basis for estimating target tissue heat load and developing therapeutic guidelines. Bioelectromagnetics 31:12–19, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Using experimental and theoretical methods of dosimetry, the energy absorption of extremely high-frequency electromagnetic radiation (EHF EMR) in the skin of laboratory rats was analyzed. Specific absorption rate (SAR) in the skin was determined on the basis of both microthermometric measurements of initial rates of temperature rise in rat skin induced by the exposure and microcalorimetric measurements of specific heat of the skin. Theoretical calculations of SAR in the skin were performed with consideration for dielectric parameters of rat skin obtained from the measurements of the standing wave ratio upon reflection of electromagnetic waves from the skin surface and for the effective area of stationary overheating measured by infrared thermography. A numerical method was developed to determine electromagnetic wave energy reflected, absorbed, and transmitted in the model of flat layers. The algorithm of the method was realized in a computer program and used to calculate SAR in the skin on the basis of the complex dielectric constant of rat skin. The SAR values obtained from experimental measurements, theoretical calculations and numerical analysis are in good mutual correspondence and make about 220-280 W/kg at a frequency of 42.25 GHz and a power of 20 mW at the radiator output. The results obtained can be used for dosimetric supply of biomedical experiments on studying the physicochemical mechanisms of the biological effects of EHF EMR.  相似文献   

12.
We experimentally demonstrated for the first time that high-peak-power pulsed electromagnetic radiation of extremely high frequency (35.27 GHz; pulse widths, 100 and 600 ns; peak power, 20 kW) is capable of thermoelastic excitation of acoustic waves in model water-containing objects and muscle tissue of animals. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical estimates and are a complex nonlinear function of electromagnetic energy input. The propagation velocities of acoustic pulses in water-gelatin models and isolated muscle tissue of animals are close to reference data. The excitation of acoustic waves in biological systems exposed to high-peak-power pulsed microwaves is an important phenomenon that makes an essential contribution to understanding the mechanisms of biological effects in these electromagnetic fields.  相似文献   

13.
The soliton model of charge and energy transport in biological macromolecules is used to suggest one of the possible mechanisms for electromagnetic radiation influence on biological systems. The influence of the electromagnetic field (EMF) on molecular solitons is studied both analytically and numerically. Numerical simulations prove the stability of solitons for fields of large amplitude, and allow the study of emission of phonons. It is shown that in the spectra of biological effects of radiation there are two characteristic frequencies of EMFs, one of which is connected with the most intensive energy absorption and emission of sound waves by the soliton, and the other of which is connected with the soliton photodissociation into a delocalized state.  相似文献   

14.
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.  相似文献   

15.
In analytical studies, we investigated induced-field patterns and SAR distributions in a lossy, dispersive, homogeneous, dielectric sphere typical of muscle tissue as irradiated by a plane-wave pulse train consisting of a pulse-modulated sinusoidal carrier wave. Calculations were made for carrier frequencies of 1, 3, and 15 GHz, pulse widths of 0.333, 2.0 and 4 ns, and pulse repetition rates of 1.11 x 10(6), 100 x 10(6), and 181.18 x 10(6) pps. The classical Mie solution was modified for a train of incident pulses that was represented by a Fourier series, and the fast-Fourier transform was used to sum the series. Computationally, the technique proved to be feasible and less expensive than we expected. The calculated field patterns show that the sphere's physical dimensions and the internal wavelength of the carrier greatly influence the nature of pulse-train propagation in the sphere. Harmonics having internal wavelengths nearly equal to the radius of the sphere produce most of the absorption; other harmonics produce little absorption. An intense hot spot is observed in spheres with radii that match the carriers' wavelengths.  相似文献   

16.
Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results.  相似文献   

17.
The present study was undertaken to investigate the thermal adjustments of squirrel monkeys exposed in a cold environment to relatively high energy levels of microwave fields. The animals (Saimiri sciureus) were equilibrated for 90 min to a cool environment (Ta = 20 degrees C) to elevate metabolic heat production (M). They were then exposed for brief (10-min) or long (30-min) periods to 2,450-MHz continuous-wave microwaves. Power densities (MPD) were 10, 14, 19, and 25 mW/cm2 during brief exposures and 30, 35, 40, and 45 mW/cm2 during long exposures (rate of energy absorption: SAR = 0.15 [W/kg]/[mW/cm2]). Individual exposures were separated by enough time to allow physiological variables to return to baseline levels. The results confirm that each microwave exposure induced a rapid decrease in M. In a 20 degree C environment, the power density of a 10-min exposure required to lower M to approximate the resting level was 35 mW/cm2 (SAR = 5.3 W/kg). During the long exposures, 20 min was needed to decrease M to its lowest level. Cessation of irradiation was associated with persistence of low levels of M for periods that depended on the power density of the preceding microwave exposure. Vasodilation, as indexed by changes in local skin temperature, occurred at a high rate of energy absorption (SAR = 4.5 W/kg) and was sufficient to prevent a dramatic increase in storage of thermal energy by the body; vasoconstriction was reinstated after termination of irradiation. Patterns of thermophysiological responses confirm the influence both of peripheral and of internal inputs to thermoregulation in squirrel monkeys exposed to microwaves in a cool environment.  相似文献   

18.
Fat cell accumulation in skeletal muscle is a major characteristic of various disorders, such as obesity, sarcopenia and dystrophies. Moreover, these fat cells could be involved in muscle homeostasis regulation as previously described for adipocytes in bone marrow. Despite recent advances on the topic, no clearly characterized mouse model is currently available to study fat accumulation within skeletal muscle. Here, we report a detailed characterization of a mouse model of skeletal muscle fat cell accumulation after degeneration induced by intra-muscular injection of glycerol. Information is provided on the kinetics of degeneration/fat deposition, including the quantity of fat deposited based on various parameters such as glycerol concentration, age, sex and strain of mice. Finally, these fat cells are characterized as true white adipocytes morphologically and molecularly. Our study shows that the mouse adipocyte accumulation within skeletal muscle after glycerol degeneration is a reproducible, transposable and easy model to use. This mouse model should allow a more comprehensive understanding of the impact of adipocyte accumulation in skeletal muscle pathophysiology.  相似文献   

19.
Dielectric heaters and sealers present the most common source of occupational exposure to excessive radio frequency (RF) fields. These systems are used industrially to heat or melt dielectric materials. Nowadays, the effects of high frequency electromagnetic (EM) fields on the health have been discussed frequently but there are few health studies done for workers around dielectric heaters and sealers. In this study, the leakage fields around dielectric heaters and sealers (27.12?MHz) were measured in MKE – Mechanical and Chemical Industry Corporation, Gazi Rocket Factory and evaluated in terms of standards. It has been observed that operators exposed to same RF fields with occupational exposure limits. Many workers have health complaints, such as elevated body temperatures in the factory. Safe distances or areas for workers should be recommended in these systems. Protective measures could be implemented to minimize these exposures. Further measurements and occupational exposure studies of RF exposed women and men are needed to demonstrate the levels of exposed Radio Frequency Radiation (RFR). Precautions should therefore be taken either to reduce the leakage fields or minimise the exposed fields.  相似文献   

20.
J Walleczek 《FASEB journal》1992,6(13):3177-3185
During the past decade considerable evidence has accumulated demonstrating that nonthermal exposures of cells of the immune system to extremely low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes that might be relevant to in vivo immune activity. A similar responsiveness to nonionizing electromagnetic energy in this frequency range has also been documented for tissues of the neuroendocrine and musculoskeletal system. However, knowledge about the underlying biological mechanisms by which such fields can induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca(2+)-regulated activity is involved in bioactive ELF field coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells and then closely examines new results that suggest a role for Ca2+ in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca2+ signaling processes are involved in the mediation of field effects on the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号