首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ANDERSON and POSPAHALA (1970) investigated the estimation of wildlife population size using the belt or line transect sampling method and devised a correction for bias, thus leading to an estimator with interesting characteristics. This work was given a uniform mathematical framework in BURNHAM and ANDERSON (1976). In this paper we extend that mathematical framework to several different sampling models, and a number of interesting discrete probability distributions emerge.  相似文献   

2.
ANDERSON and POSPAHALA (1970) investigated the estimation of wildlife population size using the belt or line transect sampling method and devised a correction for bias, thus leading to a class of estimators with desirable characteristics. This work was given a basic and rigorous mathematica framework by BURNHAM and ANDERSON (1976). In the present article we use this mathematical framework to develop an estimator of population size and density using weighted least squares. The approach is a two-stage Method.  相似文献   

3.
In this paper we present a method for estimating population divergence times by maximum likelihood in models without mutation. The maximum-likelihood estimator is compared to a commonly applied estimator based on Wright's FST statistic. Simulations suggest that the maximum-likelihood estimator is less biased and has a lower variance than the FST-based estimator. The maximum-likelihood estimator provides a statistical framework for the analysis of population history given genetic data. We demonstrate how maximum-likelihood estimates of the branching pattern of divergence of multiple populations may be obtained. We also describe how the method may be applied to test hypotheses such as whether populations have maintained equal population sizes. We illustrate the method by applying it to two previously published sets of human restriction fragment length polymorphism (RFLP) data.  相似文献   

4.
The utility of microsatellite markers for inferring population size and trend has not been rigorously examined, even though these markers are commonly used to monitor the demography of natural populations. We assessed the ability of a linkage disequilibrium estimator of effective population size (Ne) and a simple capture-recapture estimator of abundance (N) to quantify the size and trend of stable or declining populations (true N = 100–10,000), using simulated Wright–Fisher populations. Neither method accurately or precisely estimated abundance at sample sizes of S = 30 individuals, regardless of true N. However, if larger samples of S = 60 or 120 individuals were collected, these methods provided useful insights into abundance and trends for populations of N = 100–500. At small population sizes (N = 100 or 250), precision of the Ne estimates was improved slightly more by a doubling of loci sampled than by a doubling of individuals sampled. In general, monitoring Ne proved a more robust means of identifying stable and declining populations than monitoring N over most of the parameter space we explored, and performance of the Ne estimator is further enhanced if the Ne/N ratio is low. However, at the largest population size (N = 10,000), N estimation outperformed Ne. Both methods generally required ≥ 5 generations to pass between sampling events to correctly identify population trend.  相似文献   

5.
Molecular approaches to calculate effective population size estimates (Ne) are increasingly used as an alternative to long‐term demographic monitoring of wildlife populations. However, the complex ecology of most long‐lived species and the consequent uncertainties in model assumptions means that effective population size estimates are often imprecise. Although methods exist to incorporate age structure into Ne estimations for long‐lived species with overlapping generations, they are rarely used owing to the lack of relevant information for most wild populations. Here, we performed a case study on an elusive woodland bat, Myotis bechsteinii, to compare the use of the parentage assignment Ne estimator (EPA) with the more commonly used linkage disequilibrium (LD) Ne estimator in detecting long‐term population trends, and assessed the impacts of deploying different overall sample sizes. We used genotypic data from a previously published study, and simulated 48 contrasting demographic scenarios over 150 years using the life history characteristics of this species The LD method strongly outperformed the EPA method. As expected, smaller sample sizes resulted in a reduced ability to detect population trends. Nevertheless, even the smallest sample size tested (n = 30) could detect important changes (60%–80% decline) with the LD method. These results demonstrate that genetic approaches can be an effective way to monitor long‐lived species, such as bats, provided that they are undertaken over multiple decades.  相似文献   

6.
Royle JA 《Biometrics》2004,60(1):108-115
Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for N. Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on N that is exploited by the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.  相似文献   

7.
Despite its significance in evolutionary and conservation biology, few estimates of effective population size (N(e)) are available in plant species. Self-fertilization is expected to affect N(e), through both its effect on homozygosity and population dynamics. Here, we estimated N(e) using temporal variation in allele frequencies for two contrasted populations of the selfing annual Medicago truncatula: a large and continuous population and a subdivided population. Estimated N(e) values were around 5-10% of the population census size suggesting that other factors than selfing must contribute to variation in allele frequencies. Further comparisons between monolocus allelic variation and changes in the multilocus genotypic composition of the populations show that the local dynamics of inbred lines can play an important role in the fluctuations of allele frequencies. Finally, comparing N(e) estimates and levels of genetic variation suggest that H(e) is a poor estimator of the contemporaneous variance effective population size.  相似文献   

8.
We assessed information on the population structure of the nurse shark, Ginglymostoma cirratum, at Atol das Rocas, northeastern Brazil, through underwater observations. Based on photographic records of natural distinctive marks for individual recognition, we used probabilistic estimators (Petersen–Bailey and Jolly–Seber) to assess population size. We found that 46% of the sharks (194 individuals) had distinctive marks. The population size was estimated in 368 individuals, using the Petersen–Bailey estimator, and 339 individuals using the Jolly–Seber estimator.  相似文献   

9.
ABSTRACT Sightability models have been used to estimate population size of many wildlife species; however, a limitation of these models is an assumption that groups of animals observed and counted during aerial surveys are enumerated completely. Replacing these unknown counts with maximum observed counts, as is typically done, produces population size estimates that are negatively biased. This bias can be substantial depending on the degree of undercounting occurring. We first investigated a method-of-moments estimator of group sizes. We then defined a population size estimator using the method-of-moments estimator of group sizes in place of maximum counts in the traditional sightability models, thereby correcting for bias associated with undercounting group size. We also provide associated equations for calculating the variance of our estimator. This estimator is an improvement over existing sightability model techniques because it significantly reduces bias, and variance estimates provide near nominal confidence interval coverage. The data needed for this estimator can be easily collected and implemented by wildlife managers with a field crew of only 3 individuals and little additional flight or personnel time beyond the normal requirements for developing sightability models.  相似文献   

10.
Many long‐lived plant and animal species have nondiscrete overlapping generations. Although numerous models have been developed to predict the effective sizes (Ne) of populations with overlapping generations, they are extremely difficult to apply to natural populations because of the large array of unknown and elusive life‐table parameters involved. Unfortunately, little work has been done to estimate the Ne of populations with overlapping generations from marker data, in sharp contrast to the situation of populations with discrete generations for which quite a few estimators are available. In this study, we propose an estimator (EPA, estimator by parentage assignments) of the current Ne of populations with overlapping generations, using the sex, age, and multilocus genotype information of a single sample of individuals taken at random from the population. Simulations show that EPA provides unbiased and accurate estimates of Ne under realistic sampling and genotyping effort. Additionally, it yields estimates of other interesting parameters such as generation interval, the variances and covariances of lifetime family size, effective number of breeders of each age class, and life‐table variables. Data from wild populations of baboons and hihi (stitchbird) were analyzed by EPA to demonstrate the use of the estimator in practical sampling and genotyping situations.  相似文献   

11.
Effective population size (N e) is a central concept in evolutionary biology and conservation genetics. It predicts rates of loss of neutral genetic variation, fixation of deleterious and favourable alleles, and the increase of inbreeding experienced by a population. A method exists for the estimation of N e from the observed linkage disequilibrium between unlinked loci in a population sample. While an increasing number of studies have applied this method in natural and managed populations, its reliability has not yet been evaluated. We developed a computer program to calculate this estimator of N e using the most widely used linkage disequilibrium algorithm and used simulations to show that this estimator is strongly biased when the sample size is small (<‰100) and below the true N e. This is probably due to the linkage disequilibrium generated by the sampling process itself and the inadequate correction for this phenomenon in the method. Results suggest that N e estimates derived using this method should be regarded with caution in many cases. To improve the method’s reliability and usefulness we propose a way to determine whether a given sample size exceeds the population N e and can therefore be used for the computation of an unbiased estimate.  相似文献   

12.
In some cases model-based and model-assisted inferences canlead to very different estimators. These two paradigms are notso different if we search for an optimal strategy rather thanjust an optimal estimator, a strategy being a pair composedof a sampling design and an estimator. We show that, under alinear model, the optimal model-assisted strategy consists ofa balanced sampling design with inclusion probabilities thatare proportional to the standard deviations of the errors ofthe model and the Horvitz–Thompson estimator. If the heteroscedasticityof the model is 'fully explainable’ by the auxiliary variables,then this strategy is also optimal in a model-based sense. Moreover,under balanced sampling and with inclusion probabilities thatare proportional to the standard deviation of the model, thebest linear unbiased estimator and the Horvitz–Thompsonestimator are equal. Finally, it is possible to construct asingle estimator for both the design and model variance. Theinference can thus be valid under the sampling design and underthe model.  相似文献   

13.
The problem of estimating the population mean using an auxiliary information has been dealt with in literature quite extensively. Ratio, product, linear regression and ratio-type estimators are well known. A class of ratio-cum-product-type estimator is proposed in this paper. Its bias and variance to the first order of approximation are obtained. For an appropriate weight ‘a’ and good range of α-values, it is found that the proposed estimator is superior than a set of estimators (i.e., sample mean, usual ratio and product estimators, SRIVASTAVA's (1967) estimator, CHAKRABARTY's (1979) estimator and a product-type estimator) which are, in fact, the particular cases of it. At optimum value of α, the proposed estimator is as efficient as linear regression estimator.  相似文献   

14.
M C Wu  K R Bailey 《Biometrics》1989,45(3):939-955
A general linear regression model for the usual least squares estimated rate of change (slope) on censoring time is described as an approximation to account for informative right censoring in estimating and comparing changes of a continuous variable in two groups. Two noniterative estimators for the group slope means, the linear minimum variance unbiased (LMVUB) estimator and the linear minimum mean squared error (LMMSE) estimator, are proposed under this conditional model. In realistic situations, we illustrate that the LMVUB and LMMSE estimators, derived under a simple linear regression model, are quite competitive compared to the pseudo maximum likelihood estimator (PMLE) derived by modeling the censoring probabilities. Generalizations to polynomial response curves and general linear models are also described.  相似文献   

15.
Wang CY  Wang N  Wang S 《Biometrics》2000,56(2):487-495
We consider regression analysis when covariate variables are the underlying regression coefficients of another linear mixed model. A naive approach is to use each subject's repeated measurements, which are assumed to follow a linear mixed model, and obtain subject-specific estimated coefficients to replace the covariate variables. However, directly replacing the unobserved covariates in the primary regression by these estimated coefficients may result in a significantly biased estimator. The aforementioned problem can be evaluated as a generalization of the classical additive error model where repeated measures are considered as replicates. To correct for these biases, we investigate a pseudo-expected estimating equation (EEE) estimator, a regression calibration (RC) estimator, and a refined version of the RC estimator. For linear regression, the first two estimators are identical under certain conditions. However, when the primary regression model is a nonlinear model, the RC estimator is usually biased. We thus consider a refined regression calibration estimator whose performance is close to that of the pseudo-EEE estimator but does not require numerical integration. The RC estimator is also extended to the proportional hazards regression model. In addition to the distribution theory, we evaluate the methods through simulation studies. The methods are applied to analyze a real dataset from a child growth study.  相似文献   

16.
A probability proportional to size (PPS) method of sample selection, based on the transformed auxiliary information as the measure of size, has been suggested. It has been observed that the PPS estimator under the suggested method is always better than the simple random sampling with replacement (SRSWR) and the usual PPSWR estimator. The efficiency of the proposed estimator with respect to the estimators under reference has also been empirically compared.  相似文献   

17.
Over the past decade, there has been much methodological development for the estimation of abundance and related demographic parameters using mark‐resight data. Often viewed as a less‐invasive and less‐expensive alternative to conventional mark recapture, mark‐resight methods jointly model marked individual encounters and counts of unmarked individuals, and recent extensions accommodate common challenges associated with imperfect detection. When these challenges include both individual detection heterogeneity and an unknown marked sample size, we demonstrate several deficiencies associated with the most widely used mark‐resight models currently implemented in the popular capture‐recapture freeware Program MARK. We propose a composite likelihood solution based on a zero‐inflated Poisson log‐normal model and find the performance of this new estimator to be superior in terms of bias and confidence interval coverage. Under Pollock's robust design, we also extend the models to accommodate individual‐level random effects across sampling occasions as a potentially more realistic alternative to models that assume independence. As a motivating example, we revisit a previous analysis of mark‐resight data for the New Zealand Robin (Petroica australis) and compare inferences from the proposed estimators. For the all‐too‐common situation where encounter rates are low, individual detection heterogeneity is non‐negligible, and the number of marked individuals is unknown, we recommend practitioners use the zero‐inflated Poisson log‐normal mark‐resight estimator as now implemented in Program MARK.  相似文献   

18.
Tin-Yu J. Hui  Austin Burt 《Genetics》2015,200(1):285-293
The effective population size Ne is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating Ne have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator NB^ for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying Ne is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator NB^, and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of Ne to several million, hence allowing the estimation of larger Ne. Finally, we demonstrate how this algorithm can cope with nonconstant Ne scenarios and be used as a likelihood-ratio test to test for the equality of Ne throughout the sampling horizon. An R package “NB” is now available for download to implement the method described in this article.  相似文献   

19.
Measurement of temporal change in allele frequencies represents an indirect method for estimating the genetically effective size of populations. When allele frequencies are estimated for gene markers that display dominant gene expression, such as, e.g. random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers, the estimates can be seriously biased. We quantify bias for previous allele frequency estimators and present a new expression that is generally less biased and provides a more precise assessment of temporal allele frequency change. We further develop an estimator for effective population size that is appropriate when dealing with dominant gene markers. Comparison with estimates based on codominantly expressed genes, such as allozymes or microsatellites, indicates that about twice as many loci or sampled individuals are required when using dominant markers to achieve the same precision.  相似文献   

20.
Estimates of population size are critical for conservation and management, but accurate estimates are difficult to obtain for many species. Noninvasive genetic methods are increasingly used to estimate population size, particularly in elusive species such as large carnivores, which are difficult to count by most other methods. In most such studies, genotypes are treated simply as unique individual identifiers. Here, we develop a new estimator of population size based on pedigree reconstruction. The estimator accounts for individuals that were directly sampled, individuals that were not sampled but whose genotype could be inferred by pedigree reconstruction, and individuals that were not detected by either of these methods. Monte Carlo simulations show that the population estimate is unbiased and precise if sampling is of sufficient intensity and duration. Simulations also identified sampling conditions that can cause the method to overestimate or underestimate true population size; we present and discuss methods to correct these potential biases. The method detected 2–21% more individuals than were directly sampled across a broad range of simulated sampling schemes. Genotypes are more than unique identifiers, and the information about relationships in a set of genotypes can improve estimates of population size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号