首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Norling  B Hamasur  E Glaser 《FEBS letters》1987,223(2):309-314
Cross-reconstitution of isolated potato mitochondrial F1-ATPase with F1-depleted beef heart and yeast submitochondrial particles is reported. Potato F1 binds to the heterologous membrane and confers oligomycin sensitivity on the ATPase activity of the reconstituted system. Binding of F1 is promoted by the presence of Mg2+ with the maximal stimulatory effect at 20 mM. Mg2+ increase the sensitivity to oligomycin of the reconstituted system consisting of potato F1 and yeast membranes, however, they do not influence oligomycin sensitivity of potato F1 and beef heart membranes.  相似文献   

2.
Bicarbonate stimulation of hepatic mitochondrial ATPase activity decreased in rats subjected to intense physical training and reached minimum values at the end of the third week. The stimulatory effect of bicarbonate on mitochondrial heart ATPase remained unaffected under equal conditions. ATPase stimulation by dinitrophenol and sensitivity to oligomycin, both in mitochondria from rat liver or heart, were not affected by physical training. Results suggest that stimulation by dinitrophenol and bicarbonate might be due to effects on separate sites of the enzyme.  相似文献   

3.
Oligomycin sensitivity-conferring protein (OSCP) is a water-soluble subunit of bovine heart mitochondrial H(+)-ATPase (F1-F0). In order to investigate the requirement of OSCP for passive proton conductance through mitochondrial F0, OSCP-depleted membrane preparations were obtained by extracting purified F1-F0 complexes with 4.0 M urea. The residual complexes, referred to as UF0, were found to be deficient with respect to OSCP, as well as alpha, beta, and gamma subunits of F1-ATPase, but had a full complement of coupling factor 6 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting techniques. These UF0 complexes had no intrinsic ATPase activity and were able to bind nearly the same amount of F1-ATPase in the presence of either OSCP or NH4+ ions alone, or a combination of the two. However, the preparations exhibited an absolute dependency on OSCP for conferral of oligomycin sensitivity to membrane-bound ATPase. The passive proton conductance in UF0 proteoliposomes was measured by time-resolved quenching of 9-amino-6-chloro-2-methoxyacridine or 9-aminoacridine fluorescence following a valinomycin-induced K(+)-diffusion potential. The data clearly establish that OSCP is not a necessary component of the F0 proton channel nor is its presence required for conductance blockage by the inhibitors oligomycin or dicyclohexylcarbodiimide. Furthermore, OSCP does not prevent or block passive H+ leakage. Comparisons of OSCP with the F1-F0 subunits from Escherichia coli and chloroplast lead us to suggest that mitochondrial OSCP is, both structurally and functionally, a hybrid between the beta and delta subunits of the prokaryotic systems.  相似文献   

4.
Bicarbonate is a recycling substrate for cyanase   总被引:1,自引:0,他引:1  
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.  相似文献   

5.
The amount of F1-ATPase in chromatophores from Rhodospirillum rubrum was determined by Western blotting using anti-RrF1 rabbit antibodies. 9.1 mmol F1 (mol bacteriochlorophyll)-1 was obtained or 14% of the total protein content of the chromatophores. The turnover rate of the F0F1-ATPase was 17 molecules ATP s-1 during synthesis, 2 molecules ATP s-1 during hydrolysis under coupled conditions with Mg2+ as the divalent cation, and 7 molecules ATP s-1 during hydrolysis in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Binding of 1 mol oligomycin/mol F0F1-ATPase was found to inhibit the activities of the enzyme completely. A single binding site was found with a Kd of approximately 2 microM.  相似文献   

6.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

7.
Mitochondrial H+ -ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a "membrane" (NaBr-F0) and a "soluble" fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of beta, delta, and epsilon subunits of the F, ATPase and largely devoid of alpha and gamma subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and Pi-ATP exchange activities. The addition of F1 (400 micrograms X mg-1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pi-ATP exchange and H+ -pumping activities require coupling factor B in addition to F1-ATPase. The oligomycin-sensitive ATPase and 32Pi-ATP exchange activities in reconstituted F1-F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1-F0 preparations rather than to sodium bromide treatment itself. The H+ -ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35-37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler- and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and Pi-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial F0 is not known. The F0 preparations from bovine heart reported so far have been derived from H+ -ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
An azido derivative of the oligomycin sensitivity conferring protein (OSCP) was prepared by alkylation with the bifunctional reagent p-azido phenacyl bromide. Azido-OSCP was fully biologically active in the dark. Upon photoirradiation of a mixture of beef heart mitochondrial F1-ATPase and azido-OSCP, the resulting covalent photoproducts were separated by polyacrylamide gel electrophoresis in the presence of Na dodecyl sulfate and characterized by an immunochemical procedure. OSCP was found to react with the alpha and the beta subunits of F1 with strong preference for the alpha subunit.  相似文献   

9.
Bovine heart submitochondrial particles depleted of F1 by treatment with urea ("F1-depleted particles') were incubated with soluble F1-ATPase. The binding of F1 to the particles and the concomitant conferral of oligomycin sensitivity on the ATPase activity required the presence of cations in the incubation medium. NH4+, K+, Rb+, Na+ and Li+ promoted reconstitution maximally at 40-74 mM, guanidinium+ and Tris+ at 20-30 mM, and Ca2+ and Mg2+ at 3-5 mM. The particles exhibited a negative zeta-potential, as determined by microelectrophoresis, and this was neutralized by mono- and divalent cations in the same concentration range as that needed to promote F1 binding and reconstitution of oligomycin-sensitive ATPase. It is concluded that the cations act by neutralizing negative charges on the membrane surface, mainly negatively charged phospholipids. These results are discussed in relation to earlier findings reported in the literature with F1-depleted thylakoid membranes and with submitochondrial particles depleted of both F1 and the coupling proteins F6 and oligomycin sensitivity-conferring protein.  相似文献   

10.
Oligomycin sensitivity conferral protein, in the absence of coupling factor 6 (F6), is able to bind the ATPase to mitochondrial membranes with an apparent association constant of 10(6) M-1. The F6-dependent ATPase binding has an apparent association constant 1 to 2 orders of magnitude lower than that obtained with oligomycin sensitivity conferral protein. The oligomycin sensitivity conferral protein-dependent, membrane-bound ATPase activity is sensitive to rutamycin while the F6-dependent, membrane-bound ATPase activity is insensitive to rutamycin. F1-ATPase and Type II ATPase require F6 in addition to oligomycin sensitivity conferral protein and FB to reconstitute 32Pi-ATP exchange activity in silicotungstic acid particles. This F6 requirement for the 32Pi-ATP exchange is not related to the F6 effect on the ATPase binding. The Type I ATPase and therefore the 26,500-dalton subunit associated with it requires F6 and FB to reconstitute 32Pi-ATP exchange activity in silicotungstic acid particles. Oligomycin sensitivity conferral protein can be interchanged with the 26,500-dalton ATPase binding protein in the binding of the ATPase and the 32Pi-ATP exchange.  相似文献   

11.
(1) F0.F1ATPase (EC 3.6.1.3) from Micrococcus luteus ATCC 4698 was solubilized from plasma membranes by the non-ionic detergent Triton X-100 in the presence of 0.05 M MgCl2. (2) The antibiotics rutamycin, Dio-9, quercetin, oligomycin, botrycidin, efrapeptin, leucinostatin, valinomycin, and venturicidin as well as N,N'-dicyclohexylcarbodiimide and dinitrophenol are potent inhibitors of F0.F1ATPase activity.(3) F0.F1ATPase activity is completely inhibited by anti-F1ATPase antibodies. The inhibition is non-competitive. (4) Crossed immunoelectrophoresis reveals a reaction of immunological identity of F0.F1ATPase and F1ATPase indicating that both enzymes have in common antigenic sites.  相似文献   

12.
The antibiotics venturicidin, oligomycin and ossamycin were investigated as potential inhibitors of the Escherichia coli H+-ATPase. It was found that venturicidin strongly inhibited ATP-driven proton transport and ATP hydrolysis, while oligomycin weakly inhibited these functions. Inhibition of the H+-ATPase by venturicidin and oligomycin was correlated with inhibition of F0-mediate proton transport. Both inhibitors were found to interfere with the covalent reaction between dicyclohexyl[14C]carbodiimide and the F0 subunit c (uncE protein). Ossamycin had no direct inhibitory effect on E. coli F0 or F1; rather, it was found to uncouple ATP hydrolysis from proton transport.  相似文献   

13.
We have reported recently (Chinopoulos et al., 1999 J. Neurochem. 73, 220 228) that mitochondrial membrane potential (delta(psi)m) in isolated nerve terminals is markedly reduced by H2O2 in the absence of F0F1-ATPase working as a proton pump. Here we demonstrate that delta(psi)m reduced by H2O2 (0.5 mM) in the presence of oligomycin (10 mM), an inhibitor of the F0F1-ATPase, was able to recover by the addition of catalase (2000 U). Similarly, a decrease in the NAD(P)H level due to H2O2 can be reversed by catalase. In addition, H2O2 decreased the ATP level and the [ATP]:[ADP] ratio measured in the presence of oligomycin reflecting an inhibition of glycolysis by H2O2, but this effect was not reversible. The effect of H2O2 on delta(psi)m in the presence of the complex I inhibitor, rotenone, was also unaltered by addition of catalase. These results provide circumstantial evidence for a relationship between the decreased NAD(P)H level and the inability of mitochondria to maintain delta(psi)m during oxidative stress.  相似文献   

14.
1. Oligomycin and dicyclohexylcarbodiimide-sensitive ATPase was isolated from beef-heart mitochondria and treated with 3.5 M NaBr in order to remove F1. The residue, called F0, was found to consist of seven components. Five of these are stained by Coomassie blue after dodecylsulfate-polyacrylamide-gel electrophoresis. Two of them correspond to the oligomycin-sensitivity-conferring protein and coupling factor F6, with apparent molecular weights of 21,000 and 9,400, respectively. Three additional polypeptides of molecular weights 23,000, 10,500 and 8,600 were not identified with known proteins. Two components not stained with Coomassie blue were detected by autoradiography of the gels of F0 preincubated with [14C]dicyclohexylcarbodiimide. These two components probably represent monomeric and oligomeric forms of the dicyclohexylcarbodiimide-binding protein. 2. F0 induced an oligomycin and dicyclohexylcarbodiimide-sensitive enhancement of K+ + valinomycin-driven proton translocation across the membrane of artificial phospholipid vesicles. 3. The interaction of F0 with purified, soluble beef heart F1 was investigated. F0 was capable of binding F1 and conferring oligomycin and dicyclohexylcarbodiimide sensitivity and cold stability on its ATPase activity. Furthermore F0 was found to diminish the specific activity of F1-ATPase. A comparison of these effects at varying F0/F1 ratios shows that F0 binds F1 in both an oligomycin-sensitive and an oligomycin-insensitive manner, and that both types of binding involve a conferral of cold stability and a decrease in specific activity. High F0/F1 ratios favoured in oligomycin-sensitive type of binding, indicating that F1 binds preferentially to oligomycin-sensitivity-conferring sites. Treatment of ATPase complex with trypsin resulted in an F0 with a decreased proportion of oligomycin-sensitivity-conferring binding sites and a diminished ability to lower the specific activity an cold lability of F1. 4. Reconstitution of F0 treated with trypsin and F1, oligomycin-sensitivity-conferring protein and F6 showed that at a constant amount of F1 bound, both oligomycin-sensitivity-conferring protein and F6 increased the oligomycin sensitivity of ATPase activity. It was therefore concluded that both of these coupling factors are involved in the conferral of oligomycin sensitivity. 5. The effect of the order of addition of F1, oligomycin-sensitivity-conferring protein and F6 to F0 on the reconstitution of oligomycin-sensitive ATPase activity, and of F1 and oligomycin-sensitivity-conferring protein to submitochondrial particles on the reconstitution of respiratory control, was investigated. The highest values of oligomycin sensitivity and respiratory control were obtained when F1 was added as the first component, indicating that F1 plays a directing role in the organisation of the components.  相似文献   

15.
2-Hydroxy-5-nitrobenzyl bromide, a highly reactive reagent towards tryptophan residues in proteins, is shown to activate the passive proton flux through the inner mitochondrial membrane of bovine heart submitochondrial particles (ETPH). When added at low concentrations, the reagent increased both the ATPase activity of the particles and the passive proton transport rate through the membrane. The presence of oligomycin reduced the extent of the 2-Hydroxy-5-nitrobenzyl bromide action on the proton conductivity suggesting that it acted primarily on the H+-ATPase complex. Similar effects were observed on F1-depleted particles, whilst no effect was observed on the isolated F1-ATPase activity. The results suggest that polypeptides bearing tryptophan residues may be involved in the gating function of proton channels of the mitochondrial membrane and this is particularly evident for the F0F1-ATPase complex.  相似文献   

16.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

17.
A reconstitution procedure has been developed for the incorporation of the mitochondrial F0.F1-ATPase into the bilayer of egg phosphatidylcholine vesicles. The nonionic detergent, octylglucoside, egg phosphatidylcholine, and the lipid-deficient, oligomycin-sensitive F0.F1-ATPase (Serrano, R., Kanner, B., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) were combined in a 4770:320:1 detergent/phospholipid/protein molar ratio and then centrifuged on a discontinuous sucrose gradient to isolate the F0.F1-phosphatidylcholine complex. The specific activity of the reconstituted F0.F1-ATPase was as high as 14.5 mumol/min/mg protein, whereas with no added lipid the activity ranged between 1.4 and 2.2 mumol/min/mg protein. This reconstituted preparation exhibited greater than 90% oligomycin sensitivity which demonstrated the intactness of the multisubunit enzyme complex. The phosphatidylcholine/protein molar ratio of the reconstituted F0.F1 was 250:1 with less than 0.4% of the added octylglucoside remaining. Titrations with both phosphatidylcholine and octylglucoside demonstrated that the specific activity and oligomycin sensitivity were highly dependent on the concentrations of both phospholipid and detergent in the original reconstitution mixture. Analysis of the reconstituted ATPase by electron microscopy demonstrated that the catalytic portion of the enzyme complex projected from the phospholipid bilayer with an orientation similar to that observed with submitochondrial particles. The F0.F1-phosphatidylcholine complex was able to trap inulin, which suggests a vesicular structure impermeable to macromolecules. The electrophoretic mobility of the complex was identical to that for liposomes of egg phosphatidylcholine alone. The reconstitution conditions utilized give rise to an enzyme-phospholipid complex with very low ionic charge that demonstrates high oligomycin-sensitive ATPase activity.  相似文献   

18.
Proton translocating ATPases comprise a hydrophilic sector F1, a membrane sector F0, and, in the case of bovine mitochondria, a connecting "stalk" which is believed to contain the oligomycin sensitivity-conferring protein (OSCP) and coupling factor 6 (F6). The present study was undertaken to verify the accessibility of F6 and OSCP to trypsin and to examine the functional consequences of such treatment. Our data show that F1 binds equally to trypsin-treated F0 and untreated F0, but the former complexes exhibit cold lability and only partial sensitivity to oligomycin. Furthermore, these complexes fail to exhibit ATP-driven proton translocation or ATP-32Pi exchange activity. Trypsinization of F0 does not, however, inhibit passive proton conductance through the membrane sector but actually enhances it. Immunological data indicate extensive degradation of OSCP under conditions where F6 proteolysis is insignificant. Intact H+-ATPase complexes are relatively resistant to both the structural and functional effects of trypsin. We conclude that OSCP is predominantly an extrinsic protein which is shielded by F1 in the native membrane. F6 may also be an extrinsic protein but is shielded from trypsinization by OSCP and/or other F0 polypeptides. The exposed, trypsin-sensitive segments of OSCP are not required for passive proton conductance through F0 but may be required for ATP-driven reactions. We propose that bovine mitochondrial OSCP is a functional analogue of subunit b in the Escherichia coli H+-ATPase.  相似文献   

19.
Summary The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.  相似文献   

20.
Porcine heart mitochondrial H+-ATPase was reconstituted by cholate dialysis method in liposomes containing neutral (PC, PE), acidic (PG, PI, PA, PS, DPG) or neutral and acidic phospholipids. The Mg2+ effect on the ATPase activity and its sensitivity to oligomycin, ATP-induced delta psi and delta pH formation was observed for the proteoliposomes containing acidic but not neutral phospholipids. Maleimide spin labels with varying arm lengths or bromoacetamide spin probe were used to monitor the conformational difference of H+-ATPase in the Mg2+-containing and Mg2+-'free' samples. A difference in W/S ratio (weakly immobilized/strongly immobilized component in the ESR spectra) could be detected for the F0.F1-containing and F1-depleted, (F0)-containing proteoliposomes, suggesting conformational difference in the F0-F1 complex and F0 portion induced by the Mg2+ effect. A conformational change of the beta-subunits in the F1 portion was also deduced from the ATP-induced fluorescence quenching of aurovertin-complex for Mg2+-containing samples. The results obtained are in favor of our previous assumption that Mg2+ may play its role by altering the physical state of the lipid bilayer, which would induce a conformational change in F0 (buried in the lipid core), which in turn is transmitted to the catalytic F1, resulting in a higher enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号