首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Neutron diffraction studies of mineralized tissue show a close relationship between the wet state equatorial diffraction spacing and wet tissue density expressable as a second-order polynomial. The molecular fractional shrinkage when the tissue is dried shows a straight line dependence on wet tissue density with a correlation of 0.98. Since the dry state equatorial diffraction spacing is much less than for the corresponding wet state, even in fully mineralized bone, the collagen molecules must be displaced through a mineral-free volume while drying. The mineral can only be located within the available volume of the dried tissue whether intra- or extrafibrillar. The dimension of the dry state equatorial spacing for each of the tissues examined is close to that of dried tendon collagen. It appears unlikely that hydroxyapatite crystallites can be accommodated radially between collagen molecules in bone if the packing is like that of dried tail tendon collagen. The only mineral within the fibrils must be in the intermolecular gaps. It is estimated on the basis of the volume of the axial intermolecular gaps and the minimum extrafibrillar volume that the intrafibrillar mineral can be no more than 20% of the total mineral and may be less than 10%.  相似文献   

2.
Only tail tendon (TT) collagen has a sharp X-ray diffraction pattern, so that packing models for the equatorial arrangement of molecules in collagen fibrils have been developed primarily for TT collagen. A more general structure is developed applicable to all type I collagen tissues. Comparison of water content-equatorial diffraction spacing plots of several collagens shows all have essentially the same dry state diffraction spacing but differ as water content increases. TT collagen has the least spacing and the sharpest pattern. The interplanar spacing of the Hulmes-Miller quasi-hexagonal model for TT collagen was used to calculate the intermolecular spacing, which matched the observed diffraction spacing for bone matrix collagen. It is inferred that wet bone matrix collagen packs in a rectangular pattern because of the interaction between the many intermolecular crosslinks and the water absorbed on the collagen molecules. This argument also indicates that TT collagen packs into a quasi-hexagonal scheme because there are fewer intermolecular crosslinks than in bone matrix collagen.  相似文献   

3.
Neutron diffraction studies of collagen in fully mineralized bone   总被引:6,自引:0,他引:6  
Neutron diffraction measurements have been made of the equatorial and meridional spacings of collagen in fully mineralized mature bovine bone and demineralized bone collagen, in both wet and dry conditions. The collagen equatorial spacing in wet mineralized bovine bone is 1.24 nm, substantially lower than the 1.53 nm value observed in wet demineralized bovine bone collagen. Corresponding spacings for dry bone and demineralized bone collagen are 1.16 nm and 1.12 nm, respectively. The collagen meridional long spacing in mineralized bovine bone is 63.6 nm wet and 63.4 nm dry. These data indicate that collagen in fully mineralized bovine bone is considerably more closely packed than had been assumed previously, with a packing density similar to that of the relatively crystalline collagens such as wet rat tail tendon. The data also suggest that less space is available for mineral within the collagen fibrils in bovine bone than had previously been assumed, and that the major portion of the mineral in this bone must be located outside the fibrils.  相似文献   

4.
Structure of corneal scar tissue: an X-ray diffraction study.   总被引:2,自引:1,他引:1       下载免费PDF全文
Full-thickness corneal wounds (2 mm diameter) were produced in rabbits at the Schepens Eye Research Institute, Boston. These wounds were allowed to heal for periods ranging from 3 weeks to 21 months. The scar tissue was examined using low- and wide-angle x-ray diffraction from which average values were calculated for 1) the center-to-center collagen fibril spacing, 2) the fibril diameter, 3) the collagen axial periodicity D, and 4) the intermolecular spacing within the collagen fibrils. Selected samples were processed for transmission electron microscopy. The results showed that the average spacing between collagen fibrils within the healing tissue remained slightly elevated after 21 months and there was a small increase in the fibril diameter. The collagen D-periodicity was unchanged. There was a significant drop in the intermolecular spacing in the scar tissues up to 6 weeks, but thereafter the spacing returned to normal. The first-order equatorial reflection in the low-angle pattern was visible after 3 weeks and became sharper and more intense with time, suggesting that, as healing progressed, the number of nearest neighbor fibrils increased and the distribution of nearest neighbor spacings reduced. This corresponded to the fibrils becoming more ordered although, even after 21 months, normal packing was not achieved. Ultrastructural changes in collagen fibril density measured from electron micrographs were consistent with the increased order of fibril packing measured by x-ray diffraction. The results suggest that collagen molecules have a normal axial and lateral arrangement within the fibrils of scar tissue. The gradual reduction in the spread of interfibrillar spacings may be related to the progressive decrease in the light scattered from the tissue as the wound heals.  相似文献   

5.
The in situ supermolecular structure of type I collagen.   总被引:1,自引:0,他引:1  
BACKGROUND: The proteins belonging to the collagen family are ubiquitous throughout the animal kingdom. The most abundant collagen, type I, readily forms fibrils that convey the principal mechanical support and structural organization in the extracellular matrix of connective tissues such as bone, skin, tendon, and vasculature. An understanding of the molecular arrangement of collagen in fibrils is essential since it relates molecular interactions to the mechanical strength of fibrous tissues and may reveal the underlying molecular pathology of numerous connective tissue diseases. RESULTS: Using synchrotron radiation, we have conducted a study of the native fibril structure at anisotropic resolution (5.4 A axial and 10 A lateral). The intensities of the tendon X-ray diffraction pattern that arise from the lateral packing (three-dimensional arrangement) of collagen molecules were measured by using a method analogous to Rietveld methods in powder crystallography and to the separation of closely spaced peaks in Laue diffraction patterns. These were then used to determine the packing structure of collagen by MIR. CONCLUSIONS: Our electron density map is the first obtained from a natural fiber using these techniques (more commonly applied to single crystal crystallography). It reveals the three-dimensional molecular packing arrangement of type I collagen and conclusively proves that the molecules are arranged on a quasihexagonal lattice. The molecular segments that contain the telopeptides (central to the function of collagen fibrils in health and disease) have been identified, revealing that they form a corrugated arrangement of crosslinked molecules that strengthen and stabilize the native fibril.  相似文献   

6.
Variation of collagen fibril structure in tendon was investigated by x-ray diffraction. Anatomically distinct tendons from single species, as well as tendons from different species, were examined to determine the variations that exist in both the axial and lateral structure of the collagen fibrils. The meridional diffraction is derived from the axial collagen fibril structure. Anatomically distinct tendons of a particular species give meridional patterns that are indistinguishable within experimental error. The meridional diffraction patterns from tendons of different mammals are similar but show small species-specific variations, most noticeably in the 14th–18th orders. Tendons of birds also give meridional patterns that are similar to each other, but the avian patterns differ considerably from the mammalian ones. Avian tendons give stronger odd and weaker even low orders, a feature consistent with a reduced gap:overlap ratio, and have a distinctive intensity pattern for the higher meridional orders. Interpretation of these differences has been approached using biochemical data, diffraction by reconsituted fibers of purified collagen, and Fourier transform analysis. From these methods, it appears that the variations observed in the lower orders (2nd–8th) and in the higher orders (29th–52nd) are probably related to differences in the primary structure of the Type I collagen found in the different species. The variations observed in the 14th–18th orders appear not to be related to features within the triple-helical domain of the molecule. Equatorial diffraction yields information on the lateral packing of collagen molecules in the fibrils, and considerable variation was seen in different tendons. Rat tail tendon gives sharp Bragg reflections, demonstrating the presence of a crystalline lateral arrangement of molecules in the fibril. For the first time, sharp lattice reflections similar to those in rat tail tendon have been observed in nontail tendons, including rat achilles tendon, rabbit leg tendon, and wing and leg tendons of quail. In the rabbit and quail tendons, one of the strong equatorial reflections characteristic of the rat tendon pattern, at 1.26 nm, was absent. The positions of the equatorial maxima, which are a measure of intermolecular spacing, varied considerably, being smallest in the specimens displaying crystalline packing. The intermolecular distance in chiken and turkey leg tendons is longer than that found in mammalian tendons, or in avian wing tendons, which supports the hypothesis that a larger intermolecular spacing is characteristic of tendons that calcify. Thus, x-ray diffraction indicates there are reproducible differences in both the axial and lateral structure of collagen fibrils among different tendons. This work on tendon, a tissue containing almost exclusively Type I collagen as its major component, should serve as a basis for analyzing the structure of other connective tissues, which contain different genetic types of collagen and larger amounts of noncollagenous components.  相似文献   

7.
A low-angle diffraction pattern has been obtained from corneal stroma. This pattern arises both from the arrangement of the collagen fibrils and from the packing of the tropocollagen molecules along the axes of the fibrils. The spacing arising from the packing of the fibrils increases homogeneously on swelling although the tissue as a whole swells only radially referred to the intact eye. The necessary rearrangement of the fibrils for this type of swelling to occur might result in the formation of regions devoid of collagen fibrils and the water not in the lattice of collagen fibrils could be synonymous with the lakes postulated by Benedek (1971) to explain the loss of transparency on swelling.The spacings due to the packing of the tropocollagen molecules are unusual in that, although they index as the third and fifth orders of the well-known 66 nm repeat, the first order of this spacing is absent. Calculation of the Patterson function for corneal collagen leads to peaks in electron density separated by distances of 0.38 and 0.24 of the repeat distance.  相似文献   

8.
At the ultrastructural observation scale of fully mineralized tissues (l=1-10 mum), transmission electron micrographs (TEM) reveal that hydroxyapatite (HA) is situated both within the fibrils and extrafibrillarly, and that the majority of HA lies outside the fibrils. The extrafibrillar amount of HA varies from tissue to tissue. By means of mathematical modeling, we here provide strong indications that there exists a physical quantity that is the same inside and outside the fibrils, for all different fully mineralized tissues. This quantity is the average mineral concentration in the non-collagenous space. This space is the sum of the extrafibrillar volume and of the volume of the fibrils that is not occupied by collagen molecules. Two independent sets of experimental observations covering a large range of tissue mass densities establish the relevance of our proposition: (i) mass density measurements and diffraction spacing measurements, re-analyzed through a dimensionally consistent packing model; (ii) optical density measurements of TEMs. The aforementioned average uniform HA-concentration in the extracollagenous space of the ultrastructure may emphasize the putative role played by a number of non-collagenous organic molecules in providing the chemical boundary conditions for mineralization of HA in the extracollagenous space. The probable existence of an average uniform extracollagenous HA concentration has far-reaching consequences for the mechanical behavior of mineralized tissues.  相似文献   

9.
The weight fractions of the organic, mineral and water components of bone have been shown to be uniquely related to the wet bone density, except for a small variation possibly due to structure, for the range of bone densities from 1.7 g/cm3 for deer antler to 2.7 g/cm3 for porpoise petrosal. In this report the mathematical expression for the organic weight fraction is shown to depend on three factors, each a function of bone density. The first factor can be ralated to the mineral fraction, the second to the volume fraction of the organic component and the third to the density of the organic component. The influence of these factors is not obvious, since the change in the organic weight fraction could be due to an absolute loss of organic matter alone, or to a combination of increased mineral concentration together with some loss of organic matter. The mathematical development is based on the generalized packing model for collagen. It is demonstrated that the mineralization process requires a decrease of the organic component as well as a compaction of the collagen fibrils and these vary with the bone density.  相似文献   

10.
N Sasaki  S Shiwa  S Yagihara  K Hikichi 《Biopolymers》1983,22(12):2539-2547
The temperature dependence of the humidity-sensitive spacing, d, related to the lateral packing of collagen molecules was measured for fully hydrated collagen. In the vicinity of 0°C, a sudden change in d was observed, which was reversible with temperature. In the diffraction profile, below 0°C, a set of diffraction peaks identified with the hexagonal crystalline form of ice was observed. With the reduction in water content, the intensity of the set of diffraction peaks decreased and was found to be zero at a water content of 0.38 g/g collagen. These results were considered to be caused by the frozen water in collagen fibril below 0°C. According to the water content dependence of d, it was considered that up to a certain water content water absorbed would be stowed in the intermolecular space of collagen and above that water content water molecules would aggregate to make pools, i. e., extrafibrillar spaces. The unfreezable bound water was considered to be located in the intermolecular space of collagen. Size of the extrafibrillar space, determined from the intensity analysis of a smallangle x-ray scattering pattern, corroborates the speculation that the water showed in the extrafibrillar space is freezable and free. The formation of the hexagonal crystalline form of ice in the extrafibrillar space was considered to cause the sudden change in d at 0°C.  相似文献   

11.
Structure and function of bone collagen fibrils   总被引:4,自引:0,他引:4  
The intermolecular volume of fully hydrated collagen fibrils from a number of mineralized and non-mineralized tissues of adult rats has been determined both by an exclusion technique and by a method which involves the monitoring of specific X-ray diffraction parameters. The intermolecular volume of either bone or dentinal fibrils is approximately twice that of either tail or achilles tendon, and the most frequent intermolecular distance in bone or dentine fibrils is approximately 3 Å larger than of the tendons.A number of fibrillar structures are most compatible with the intermolecular volume of rat tail tendon. These include hexagonal molecular packing and orthogonal arrays of microfibrils comprising seven parallel molecular strands. The intermolecular volume of bone or dentinal collagen fibrils, on the other hand, appears to arise from structures having a disordered or pseudo-hexagonal molecular packing, in which the most frequent intermolecular distance is about 19 Å.The space associated with collagen fibrils in adult bone is such that 70 to 80% of the mineral is located within the intermolecular space of the fibrils—approximately equal amounts of mineral being in spaces having lateral dimensions of 25 to 75 Å and 6 to 12 Å, respectively. Particles located in the latter kind of intermolecular space probably constitute, to a large extent, the non-crystalline mineral phase of adult bone.The stereo-chemical constraints on the transport of mineral ions into and within collagen fibrils of bone and tendon support the postulate that bone collagen is an in vivo catalyst for mineral deposition and further suggests that its catalytic activity may be partially regulated through its molecular packing.  相似文献   

12.
The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.  相似文献   

13.
The molecular packing arrangement within collagen fibrils has a significant effect on the tensile properties of tissues. To date, most studies have focused on homotypic fibrils composed of type I collagen. This study investigates the packing of type I/III collagen molecules in heterotypic fibrils of colonic submucosa using a combination of X-ray diffraction data, molecular model building, and simulated X-ray diffraction fibre diagrams. A model comprising a 70-nm-diameter D- (approximately 65 nm) axial periodic structure containing type I and type III collagen chains was constructed from amino acid scattering factors organised in a liquid-like lateral packing arrangement simulated using a classical Lennard-Jones potential. The models that gave the most accurate correspondence with diffraction data revealed that the structure of the fibril involves liquid-like lateral packing combined with a constant helical inclination angle for molecules throughout the fibril. Combinations of type I:type III scattering factors in a ratio of 4:1 gave a reasonable correspondence with the meridional diffraction series. The attenuation of the meridional intensities may be explained by a blurring of the electron density profile of the D period caused by nonspecific or random interactions between collagen types I and III in the heterotypic fibril.  相似文献   

14.
The X-ray diffraction of fibers reconstituted from purified rat tail tendon collagen has been compared with that of native rat tail tendon. The axial structure is very similar in the two specimens, while the ordered lateral array found in the native state is only poorly reproduced in the reconstituted fiber. Thus, the axial order is determined by the collagen molecules alone, while the native lateral packing may depend, in part at least, on other tissue components.  相似文献   

15.
Collagens are essential components of extracellular matrices in multicellular animals. Fibrillar type II collagen is the most prominent component of articular cartilage and other cartilage-like tissues such as notochord. Its in situ macromolecular and packing structures have not been fully characterized, but an understanding of these attributes may help reveal mechanisms of tissue assembly and degradation (as in osteo- and rheumatoid arthritis). In some tissues such as lamprey notochord, the collagen fibrillar organization is naturally crystalline and may be studied by x-ray diffraction. We used diffraction data from native and derivative notochord tissue samples to solve the axial, D-periodic structure of type II collagen via multiple isomorphous replacement. The electron density maps and heavy atom data revealed the conformation of the nonhelical telopeptides and the overall D-periodic structure of collagen type II in native tissues, data that were further supported by structure prediction and transmission electron microscopy. These results help to explain the observed differences in collagen type I and type II fibrillar architecture and indicate the collagen type II cross-link organization, which is crucial for fibrillogenesis. Transmission electron microscopy data show the close relationship between lamprey and mammalian collagen fibrils, even though the respective larger scale tissue architecture differs.  相似文献   

16.
Site-specific and depth-dependent properties of cartilage were implemented within a finite element (FE) model to determine if compositional or structural changes in the tissue could explain site-specific alterations of chondrocyte deformations due to cartilage loading in rabbit knee joints 3 days after a partial meniscectomy (PM). Depth-dependent proteoglycan (PG) content, collagen content and collagen orientation in the cartilage extracellular matrix (ECM), and PG content in the pericellular matrix (PCM) were assessed with microscopic and spectroscopic methods. Patellar, femoral groove and samples from both the lateral and medial compartments of the femoral condyle and tibial plateau were extracted from healthy controls and from the partial meniscectomy group. For both groups and each knee joint site, axisymmetric FE models with measured properties were generated. Experimental cartilage loading was applied in the simulations and chondrocyte volumes were compared to the experimental values. ECM and PCM PG loss occurred within the superficial cartilage layer in the PM group at all locations, except in the lateral tibial plateau. Collagen content and orientation were not significantly altered due to the PM. The FE simulations predicted similar chondrocyte volume changes and group differences as obtained experimentally. Loss of PCM fixed charge density (FCD) decreased cell volume loss, as observed in the medial femur and medial tibia, whereas loss of ECM FCD increased cell volume loss, as seen in the patella, femoral groove and lateral femur. The model outcome, cell volume change, was also sensitive to applied tissue geometry, collagen fibril orientation and loading conditions.  相似文献   

17.
S Lees 《Biophysical journal》1998,75(2):1058-1061
The equatorial diffraction pattern associated with collagenous tissues, particularly type I collagen, is diffuse and clearly unlike that from crystals. Hukins and Woodhead-Galloway proposed a statistical model that they termed a "liquid crystal" for collagen fibers in tendons. Fratzl et al. applied this model to both unmineralized and mineralized turkey leg tendon, a model that ignores the organization imposed by the well-known cross-linking. The justification for adopting this model is that the curve fits the data. It is shown that the data can be equally well matched by fitting a least-squares curve consisting of a second-order polynomial plus a Gaussian. The peak of the Gaussian is taken as the equatorial spacing of the collagen. A physical explanation for this model is given, as is a reason for the changes in the spacing with changes in water content of the tissue. The diffusion is attributed to thermally driven agitation of the molecules, in accordance with the Debye-Waller theory including the Gaussian distribution. The remainder of the diffusion is attributed to other scattering sources like the mineral crystallites.  相似文献   

18.
Fibrillin-rich microfibrils are the major structural components of the extracellular matrix that provide elasticity in a majority of connective tissues. The basis of elastic properties lies in the organization of fibrillin molecules, which, unfortunately, is still poorly understood. An X-ray diffraction study of hydrated fibrillin-rich microfibrils from zonular filaments has been conducted to give an insight into the molecular structure of microfibrils in intact tissue. A series of measurements was taken during controlled tissue extension to observe alterations in the lateral packing of microfibrils. Computer-generated simulated patterns were used to fit the experimental X-ray scattering data and to obtain the fibril diameter and lateral distance between the fibrils. The results suggest a nonlinear correlation between external strain and decrease in fibril diameter and lateral spacing. This was accompanied by a nonlinear increase in axial periodicity and a structure with a 160-nm periodicity, which is reported here for the first time using X-ray diffraction. These changes may reflect the unraveling of fibrillin from the complex folded arrangement into a linear structure. This finding supports a pleating model where fibrillin molecules are highly folded within the microfibrils; more importantly, the connection is made between the interaction of individual microfibrils and the change in their suprafibrillar coherent organization during extension. We suggest that the intermediate states observed in our study reflect sequential unfolding of fibrillin and can explain the process of its reversible unraveling.  相似文献   

19.
Low-angle X-ray diffraction shows that, despite the well-defined regular axially projected structure, there is no long-range lateral order in the packing of molecules in native (undried) or dried elastoidin spicules from the fin rays of the spurhound Squalus acanthias. The equatorial intensity distribution of the X-ray diffraction pattern from native elastoidin indicates a molecular diameter of 1.1 nm and a packing fraction for the structure projected on to a plane perpendicular to the spicule (fibril) axis of 0.31 (the value for tendon is much higher at around 0.6). Density measurements support this interpretation. When the spicule dries the packing fraction increases to 0.43 but there is still no long-range order in the structure. The X-ray diffraction patterns provide no convincing evidence for any microfibrils or subfibrils in elastoidin. Gel electrophoresis shows that the three chains in the elastoidin molecule are identical. The low packing fraction for collagen molecules in elastoidin explains the difference in appearance between electron micrographs of negatively stained elastoidin and tendon collagen. In elastoidin, but not in tendon collagen, an appreciable proportion of the stain is able to penetrate between the collagen molecules.  相似文献   

20.
The strength of bone is related to its mass and geometry, but also to the physical properties of the tissue itself. Bone tissue is composed primarily of collagen and mineral, each of which changes with age, and each of which can be affected by pharmaceutical treatments designed to prevent or reverse the loss of bone. With age, there is a decrease in collagen content, which is associated with an increased mean tissue mineralization, but there is no difference in cross-link levels compared to younger adult bone. In osteoporosis, however, there is a decrease in the reducible collagen cross-links without an alteration in collagen concentration; this would tend to increase bone fragility. In older people, the mean tissue age (MTA) increases, causing the tissue to become more highly mineralized. The increased bone turnover following menopause may reduce global MTA, and would reduce overall tissue mineralization. Bone strength and toughness are positively correlated to bone mineral content, but when bone tissue becomes too highly mineralized, it tends to become brittle. This reduces its toughness, and makes it more prone to fracture from repeated loads and accumulated microcracking. Most approved pharmaceutical treatments for osteoporosis suppress bone turnover, increasing MTA and mineralization of the tissue. This might have either or both of two effects. It could increase bone volume from refilling of the remodeling space, reducing the risk for fracture. Alternatively, the increased MTA could increase the propensity to develop microcracks, and reduce the toughness of bone, making it more likely to fracture. There may also be changes in the morphology of the mineral crystals that could affect the homogeneity of the tissue and impact mechanical properties. These changes might have large positive or negative effects on fracture incidence, and could contribute to the paradox that both large and small increases in density have about the same effect on fracture risk. Bone mineral density measured by DXA does not discriminate between density differences caused by volume changes, and those caused by changes in mineralization. As such, it does not entirely reflect material property changes in aging or osteoporotic bone that contribute to bone's risk for fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号