首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the challenges of manipulating genes in primary cells is that the cells have a finite proliferation capacity. This, combined with the lower gene targeting efficiency of somatic cells, makes identification of targeted clones very difficult. The objective of this study was to establish a system that allows porcine foetal fibroblasts to reach their maximal proliferation capacity in vitro. The influence of fibroblast origin, stage of foetal development, cell seeding densities and concentration of foetal bovine serum (FBS) on the population doublings, the percentage of beta-galactosidase-activity-positive cells and the genome stability of foetal fibroblasts during in vitro culture was investigated. It was found that porcine foetal fibroblasts could be cultured for over 80 population doublings in the appropriate culture system. Fibroblasts from earlier stages of foetal development were better candidate cells than those from the later stages. Cells from the heart were more actively proliferative and more resistant to replicative senescence than those from the liver. Compared to 10% FBS content, 15% FBS provided better homeostatic support, not only to proliferative performance, but also in maintaining a normal karyotype. In addition, the proliferative life span of porcine foetal fibroblasts is also dependent on seeding density of the culture.  相似文献   

2.
Analysis of in vitro colony formation in agar cultures of foetal haemopoietic tissues of eight mammalian species has shown that granulocyte-macrophage progenitor cells are present in foetal liver, yolk sac, marrow and spleen in numbers approaching the incidence in adult marrow. Such characteristics as buoyant density, growth rate and differentiation served to distinguish foetal from adult colony forming cells (CFCs). Cell cycle analysis performed by exposing haemopoietic cells to high doses of tritiated thymidine in vitro showed that foetal CFC proliferation in species of short gestation (rabbit, rat, mouse) approached or exceeded that observed in adult marrow. In contrast, in species of long gestation (human, monkey, calf, lamb, guinea-pig) a period of variable duration was observed when foetal liver CFCs entered a non-cycling G0 or blocked G1 phase. In these species foetal liver CFCs were found to be proliferating actively early in gestation and following the non-cycling phase again re-entered a proliferative state associated with onset of active granulopoiesis in foetal marrow and possible migration of CFC from liver to marrow. These results indicate the existence of granulocyte-macrophage progenitor populations displaying foetal characteristics and adapted to particular stages of haemopoietic development, a situation which closely parallels that reported for erythropoiesis.  相似文献   

3.
The promise(s) of using Fetal Calf Serum (FCS) as a supplement for the maintenance of cell cultures has been well documented. However, FCS forms the xenogenic source for any human derived cells/organ and limits its application. Recently, the usage of human umbilical cord blood serum (hUCBS) for maintenance of mesenchymal cells has been supportive. In the present study we investigated the effects of hUCBS and FCS on the proliferation (viability, proliferative) and its differentiation potential (DTZ staining, immunofluroscence) to generate islet like cellular aggregates (ICAs) using the human derived Panc-1 cell lines. A comparative analysis of hUCBS and FCS for each parameter demonstrated that hUCBS supplemented media was better for proliferation and differentiation of the Panc-1 cells. The ICAs obtained from hUCBS primed cultures showed a higher yield, increased islet size, and showed an increase for insulin staining compared to FCS. We suggest that hUCBS can be explored as an alternate serum supplement for FCS, making it more feasible in cell systems of human derived origin and can also find its application for the human transplantation programmes.  相似文献   

4.
Human granulocyte colony stimulating factor (G-CSF) can support the survival and short term proliferation of the interleukin 3 (IL 3)-dependent diploid murine hemopoietic progenitor cell line 32D C13. After 8 days in the presence of 30 U/ml of G-CSF and in the absence of IL 3, the great majority of 32D C13 cells becomes positive for myeloperoxidase (a marker that appears at the promyelocytic stage of the granulocytic lineage) and progressively differentiates into lactoferrin-containing neutrophilic granulocytes. Myeloperoxidase mRNA rapidly increases after 24 to 48 hr of treatment with G-CSF, peaks at day 6 and is no longer detectable at day 9 and 12, paralleling the appearance of myeloperoxidase-positive promyelocytes and myelocytes in the culture. After 12 days, 100% of the cells terminally differentiate, and clonogenic assays in IL 3-containing semisolid media indicate that the whole population has irreversibly lost proliferative capability. By using varying concentrations of both murine IL 3 and recombinant human G-CSF, the cultures develop an heterogeneous population of cells representing all the differentiation stages of the myeloid lineage, and the relative ratios of immature proliferating precursors and terminally differentiated cells present in the cultures can be modulated by modifying the concentrations of IL 3 or recombinant human G-CSF. Isobolic curves indicate that IL 3 and G-CSF have an antagonistic effect on the proliferation of 32D C13 cells. Thus, these cells represent a simplified in vitro model of normal granulocytic differentiation whose extent may be modulated completely in the presence of serum by two well-defined growth and differentiation factors: IL 3 and G-CSF.  相似文献   

5.
The addition of monoclonal antibodies against the human C3b/C4b receptor (CR1) to cultures of peripheral blood lymphocytes in the presence of suboptimal amounts of TNP bound to polyacrylamide beads enhanced by 150 to 400% the specific anti-TNP response, as measured by a plaque-forming cell assay on day 7. Anti-CR1 antibodies similarly enhanced the anti-fluorescein antibody response. Enhancement only occurred in cultures performed in the presence of the relevant antigen. No enhancing effect on the anti-TNP response was observed on addition to cultures of monoclonal antibodies directed against other surface antigens of B cells or an anti-T cell antibody of the same subclass as that of anti-CR1 antibodies. Anti-CR1 antibodies alone did not induce nonspecific B cell proliferation and did not provide B cells with a first signal for proliferation in the presence of a source of B cell growth factors. Anti-CR1 antibodies did not enhance the nonspecific proliferative response of B cells to growth factors derived from PHA-stimulated T cells, semi-purified BCGF 20 KD, BCGF 50 KD, or recombinant IL 2 in the presence of anti-mu. In this respect, the effect of anti-CR1 antibodies differs from that of anti-CR2 antibodies which interact with early stages of B cell activation. In contrast, anti-CR1 antibodies enhanced specific differentiation of antigen-activated B cells in the absence of T cells when soluble T cell factors were provided. Similar results were obtained by using either of two sources of differentiation factors, the MLA-144 supernatant or a 30 to 15 KD fraction from PHA-stimulated T cells. These results indicate that triggering of CR1 on B cells positively regulates the specific antibody response to low doses of antigen by enhancing B cell differentiation whether T cell help is provided by intact T cells or by T cell-derived differentiation factors.  相似文献   

6.
The relative proliferative capacity of haematopoietic cell populations derived from 22-week-old adult bone marrow and 14–18 day foetal liver has been studied in lethally irradiated syngeneic recipients by means of chromosome markers. Although starting at a disadvantage in terms of the number of colony-forming units (stem cells) injected, the foetal liver-derived populations steadily increased their relative numbers in the myeloid and lymphoid tissues over a period of several weeks until a plateau was reached. It is suggested that stem cells in foetal liver have, on average, a higher intrinsic capacity for self-renewal than do those in bone marrow, and that this capacity falls to the adult level within about ten weeks of transfer.  相似文献   

7.
E Platzer  S Simon  J R Kalden 《Blood cells》1988,14(2-3):463-469
Human granulocyte colony stimulating factor (G-CSF) was previously shown to support the survival and proliferation of early myeloid progenitors (pre-CFU) that are capable of generating more mature CFU-GM progenitor cells. To evaluate the scope of action of G-CSF in the hierarchy of hematopoietic stem cells, we studied the effects of recombinant G-CSF (rhG-CSF) on long-term cultures of normal human bone marrow cells (LTBMC). We found that rhG-CSF predominantly influenced initial cell proliferation and expansion of CFU-GM progenitor cells in LTBMC before establishment of a confluent adherent layer. In rhG-CSF-treated LTBMC, the stromal cell layer was associated with a higher proliferative capacity and progenitor cell content as compared to control cultures. This effect was pronounced early after layer confluence and was gradually lost with culture time. rhG-CSF did not alter the duration of the productive phase of LTBMC, suggesting that it may not be active on the hematopoietic stem cells responsible for LTBMC propagation. Alternatively, stromal cells may exert tight regulatory control over progenitor cells, even in the presence of rhG-CSF.  相似文献   

8.
9.
In vivo, melanocytes were detected in epidermis from human tissue of 6.5 weeks estimated gestinational age (EGA) and older. We have successfully established melanocyte monocultures from tissue of 9 to 10 weeks EGA. To our knowledge, this is the first report on physiology of human foetal melanocytes in monoculture. In culture, such melanocytes retained foetal characteristics. Proliferation rates noted were markedly higher (approximately 2.7-fold) when compared to those in cultures of neonatal melanocytes. Moreover, when analyzing cellular phenotypes by markers for cells of the melanocytic lineage, foetal cells isolated from tissue of 9 weeks EGA reproducibly showed expression of the high molecular weight (HMW) antigen and c-kit to an extent intermediate to that found in neonatal melanocytes and M14 melanoma cells. Such differential expression was not observed if cells were isolated from tissue of 10 weeks EGA, indicating that the foetal environment provides essential differentiation stimuli during the 10th week of gestation. Moreover, these results are supportive of the theory that malignant transformation involves a process of dedifferentiation. In all, human foetal melanocyte culture provides a useful model to investigate pigment cell differentiation.  相似文献   

10.
Fc fragments derived from human IgG1 induce murine splenic B lymphocytes to undergo proliferation and differentiation to antibody-secreting cells. The polyclonal antibody response was found to require both the presence of macrophages and T cells. Spleen cell cultures from nude mice or T cell-depleted normal mice proliferate to the level of untreated control mice but do not produce polyclonal antibody unless T cells are added. Regulation of the Fc fragment induced B cell differentiation to antibody synthesis apparently occurs through two distinct signals. One signal is provided by Fc fragments for proliferation and the other by T cells for differentiation. This suggestion is supported by the observation that spleen cell preparations, devoid of T cells, are capable of proliferation to the level of normal spleen cell cultures in response to Fc fragments, but are incapable of making a polyclonal antibody response. The cell population that responds to the differentiation signal also responds to the proliferative signal. "Hot pulse" experiments demonstrated that proliferation precedes polyclonal activation.  相似文献   

11.
The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5-6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments.  相似文献   

12.
13.
IL-6 is a differentiation factor for M1 and WEHI-3B myeloid leukemic cells   总被引:3,自引:0,他引:3  
IL-6 has multiple biologic activities in different cell systems including both the ability to support cell proliferation and to induce differentiation. We reported previously the isolation and functional expression of a mouse IL-6 (mIL-6) cDNA clone derived from bone marrow stromal cells. In this paper, we show that mIL-6 is a potent inducer of terminal macrophage differentiation for a mouse myeloid leukemic cell line, M1. Addition of mIL-6 to cultures of M1 cells rapidly inhibits their proliferation and induces phagocytic activity and morphologic changes characteristic of mature macrophages. These phenotypic changes are accompanied at the molecular level by a decrease in proto-oncogene c-myc mRNA accumulation and increases in Fc gamma R, proto-oncogenes c-fos and c-fms (CSF-1R) mRNA expression. Furthermore, IL-6 enhances the expression of Fc gamma R and c-fms in differentiation-responsive D+, but not unresponsive D- sublines of mouse myelomonocytic leukemic WEHI-3B cells. Together with our previous observation that IL-6 stimulates colony formation by normal myeloid progenitors, these results strongly suggest an important regulatory role for IL-6 in myeloid cell growth and differentiation.  相似文献   

14.
15.
The action of glucocorticoids on the proliferative response of human lymphocytes stimulated in vitro by MPPS has been investigated. The effect of Dex was dependent on the time of steroid addition to the cultures. Dex added at the beginning of the culture period inhibited, cell proliferation and IL 1/IL 2 synthesis, although not completely. However, a delayed addition of 24 to 48 hr resulted in an enhancing effect on cell proliferative responses that was maximal at day 4. The effect of Dex on T suppressor cell activity was then investigated. Dex added 1 day before the appearance of suppressor cells resulted in a marked decrease or disappearance of the suppressive activity. Moreover, primed T lymphocytes treated with Dex in the presence of exogenous IL 2 enhanced the proliferative responses of fresh autologous PBMC stimulated by MPPS. Taken together, our data suggest that glucocorticoids inhibit the differentiation of T suppressor cells and that IL 2 is unable to reverse this inhibitory effect.  相似文献   

16.
High frequencies (up to 50%) of spontaneous adipocyte differentiation are observed in cultures of 9 day gestation Syrian hamster embryos (E9 cells) within six to eight population doublings after primary culture. This is in contrast to the absence of adipogenic cells in primary cultures derived from later gestation age Syrian hamster tissue. In addition, E9 primary cultures contain a transient subpopulation of presumptive mesenchymal stem or progenitor cells that lack density dependent inhibition of growth [contact-insensitive (CS-) cells]. Analysis of the temporal pattern of expression of the CS- and adipocyte phenotypes during the proliferative life span of E9 cells demonstrates that maximal expression of the CS- phenotype precedes maximal expression of adipocyte differentiation. In addition, lipid accumulation appears to occur primarily, if not exclusively, in the contact-sensitive (CS+) cells that are derived from CS- cells. These observations suggest that primary E9 cultures contain either adipoblasts or primordial mesenchymal cells that become determined to the adipocyte lineage early during the in vitro life span of the cultures, and that the CS- phenotype may be a marker for these earlier developmental cell stages.  相似文献   

17.
Multipotent mesenchymal stromal cells (MSCs) from Wharton''s jelly (WJ) of umbilical cord bear higher proliferation rate and self-renewal capacity than adult tissue-derived MSCs and are a primitive stromal cell population. Stem cell niche or physiological microenvironment plays a crucial role in maintenance of stem cell properties and oxygen concentration is an important component of the stem cell niche. Low oxygen tension or hypoxia is prevalent in the microenvironment of embryonic stem cells and many adult stem cells at early stages of development. Again, in vivo, MSCs are known to home specifically to hypoxic events following tissue injuries. Here we examined the effect of hypoxia on proliferation and in vitro differentiation potential of WJ-MSCs. Under hypoxia, WJ-MSCs exhibited improved proliferative potential while maintaining multi-lineage differentiation potential and surface marker expression. Hypoxic WJ-MSCs expressed higher mRNA levels of hypoxia inducible factors, notch receptors and notch downstream gene HES1. Gene expression profile of WJ-MSCs exposed to hypoxia and normoxia was compared and we identified a differential gene expression pattern where several stem cells markers and early mesodermal/endothelial genes such as DESMIN, CD34, ACTC were upregulated under hypoxia, suggesting that in vitro culturing of WJ-MSCs under hypoxic conditions leads to adoption of a mesodermal/endothelial fate. Thus, we demonstrate for the first time the effect of hypoxia on gene expression and growth kinetics of WJ-MSCs. Finally, although WJ-MSCs do not induce teratomas, under stressful and long-term culture conditions, MSCs can occasionally undergo transformation. Though there were no chromosomal abnormalities, certain transformation markers were upregulated in a few of the samples of WJ-MSCs under hypoxia.  相似文献   

18.
Antioxidants are known to influence metabolism and promote cell survival in a number of cell culture systems. However, their effects on the modulation of bone cell differentiationin vitroare not clearly defined. In the present studies we have investigated the effects of β-mercaptoethanol (βME) and ascorbate alone and in combination on human osteoprogenitors derived from bone marrow fibroblasts. In primary marrow cultures, βME stimulated colony formation (2-fold), alkaline phosphatase activity (3.5-fold) and, increased DNA synthesis (8-fold) after 21 days. Cell proliferation was increased significantly by βME during the first 4 days of a 10-day culture period, indicating stimulation of marrow osteoprogenitor proliferation. Ascorbate did not significantly augment the effects of βME in primary cultures or long-term cultures of passaged bone marrow fibroblasts. These findings indicate a potential beneficial role for βME addition for the optimal maintenance of colony formation, cell proliferation and differentiation of marrow osteoprogenitor cells in primary human bone marrow fibroblast cultures.  相似文献   

19.
Primary human hepatocytes isolated from patient biopsies represent the most physiologically relevant cell culture model for hepatitis C virus (HCV) infection, but these primary cells are not readily accessible, display individual variability, and are largely refractory to genetic manipulation. Hepatocyte-like cells differentiated from pluripotent stem cells provide an attractive alternative as they not only overcome these shortcomings but can also provide an unlimited source of noncancer cells for both research and cell therapy. Despite its promise, the permissiveness to HCV infection of differentiated human hepatocyte-like cells (DHHs) has not been explored. Here we report a novel infection model based on DHHs derived from human embryonic (hESCs) and induced pluripotent stem cells (iPSCs). DHHs generated in chemically defined media under feeder-free conditions were subjected to infection by both HCV derived in cell culture (HCVcc) and patient-derived virus (HCVser). Pluripotent stem cells and definitive endoderm were not permissive for HCV infection whereas hepatic progenitor cells were persistently infected and secreted infectious particles into culture medium. Permissiveness to infection was correlated with induction of the liver-specific microRNA-122 and modulation of cellular factors that affect HCV replication. RNA interference directed toward essential cellular cofactors in stem cells resulted in HCV-resistant hepatocyte-like cells after differentiation. The ability to infect cultured cells directly with HCV patient serum, to study defined stages of viral permissiveness, and to produce genetically modified cells with desired phenotypes all have broad significance for host-pathogen interactions and cell therapy.  相似文献   

20.
Erythropoietin receptor signalling is required for normal brain development.   总被引:24,自引:0,他引:24  
Erythropoietin, known for its role in erythroid differentiation, has been shown to be neuroprotective during brain ischaemia in adult animal models. Although high levels of erythropoietin receptor are produced in embryonic brain, the role of erythropoietin during brain development is uncertain. We now provide evidence that erythropoietin acts to stimulate neural progenitor cells and to prevent apoptosis in the embryonic brain. Mice lacking the erythropoietin receptor exhibit severe anaemia and defective cardiac development, and die at embryonic day 13.5 (E13.5). By E12.5, in addition to apoptosis in foetal liver, endocardium and myocardium, the erythropoietin receptor null mouse shows extensive apoptosis in foetal brain. Lack of erythropoietin receptor affects brain development as early as E10.5, resulting in a reduction in the number of neural progenitor cells and increased apoptosis. Corresponding in vitro cultures of cortical cells from Epor(-/-) mice also exhibited decreases in neuron generation compared with normal controls and increased sensitivity to low oxygen tension with no surviving neurons in Epor(-/-) cortical cultures after 24 hour exposure to hypoxia. The viability of primary Epor(+/+) rodent embryonic cortical neurons was further increased by erythropoietin stimulation. Exposure of these cultures to hypoxia induced erythropoietin expression and a tenfold increase in erythropoietin receptor expression, increased cell survival and decreased apoptosis. Cultures of neuronal progenitor cells also exhibited a proliferative response to erythropoietin stimulation. These data demonstrate that the neuroprotective activity of erythropoietin is observed as early as E10.5 in the developing brain, and that induction of erythropoietin and its receptor by hypoxia may contribute to selective cell survival in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号