首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Originally resident in southeastern Europe, the codling moth (Cydia pomonella L.) (Tortricidae) has achieved a nearly global distribution, being one of the most successful pest insect species known today. As shown in our accompanying study, mitochondrial genetic markers suggest a Pleistocenic splitting of Cydia pomonella into two refugial clades which came into secondary contact after de-glaciation. The actual distribution pattern shows, however, that Central European codling moths have experienced a geographic splitting into many strains and locally adapted populations, which is not reflected by their mitochondrial haplotype distribution. We therefore have applied, in addition to mitochondrial markers, an approach with a higher resolution potential at the population level, based on the analysis of amplification fragment length polymorphisms (AFLPs). As shown in the present study, AFLP markers elucidate the genetic structure of codling moth strains and populations from different Central European apple orchard sites. While individual genetic diversity within codling moth strains and populations was small, a high degree of genetic differentiation was observed between the analyzed strains and populations, even at a small geographic scale. One of the main factors contributing to local differentiation may be limited gene flow among adjacent codling moth populations. In addition, microclimatic, ecological, and geographic constraints also may favour the splitting of Cydia pomonella into many local populations. Lastly, codling moths in Central European fruit orchards may experience considerable selective pressure due to pest control activities. As a consequence of all these selective forces, today in Central Europe we see a patchy distribution of many locally adapted codling moth populations, each of them having its own genetic fingerprint. Because of the complete absence of any correlation between insecticide resistance and geographic or genetic distances among populations, AFLP markers do not have a prognostic value for predicting an outbreak of pesticide resistance in the field. By combining mitochondrial genetic data and AFLP analysis it was possible, however, to track the recent evolutionary history of Cydia pomonella on three different time scales: from population splitting in Pleistocene, to interbreeding of mitochondrial haplotypes in Holocene, to human-aided complete intermixing and splitting into many locally adapted populations in very recent times. The case of Cydia pomonella is reminiscent of examples of sympatric speciation and another example of a human-induced globally successful pest species.  相似文献   

2.
Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene flow mediated by human crop trade.  相似文献   

3.
Host recognition and use in female parasitoids strongly relies on host fidelity, a plastic behavior which can significantly restrict the host preferences of parasitoids, thus reducing the gene flow between parasitoid populations attacking different insect hosts. However, the effect of migrant males on the genetic differentiation of populations has been frequently ignored in parasitoids, despite its known impact on gene flow between populations. Hence, we studied the extent of gene flow mediated by female and male parasitoids by assessing sibship relationships among parasitoids within and between populations, and its impact on geographic and host‐associated differentiation in the aphid parasitoid Aphidius ervi. We report evidences of a high gene flow among parasitoid populations on different aphid hosts and geographic locations. The high gene flow among parasitoid populations was found to be largely male mediated, suggested by significant differences in the distribution of full‐sib and paternal half‐sib dyads of parasitoid populations.  相似文献   

4.
Colonial social spiders experience extreme inbreeding and highly restricted gene flow between colonies; processes that question the genetic cohesion of geographically separated populations and which could imply multiple origins from predecessors with limited gene flow. We analysed species cohesion and the potential for long-distance dispersal in the social spider Stegodyphus dumicola by studying colony structure in eastern South Africa and the cohesion between this population and Namibian populations previously published. Data from both areas were (re)analysed for historic demographic parameters. Eastern South African S. dumicola were closely related to an east Namibian lineage, showing cohesion of S. dumicola relative to its sister species. Colony structure was similar in both areas with mostly monomorphic colonies, but haplotype diversity was much reduced in eastern South Africa. Here, the population structure indicated recent population expansion. By contrast, Namibia constitutes an old population, possibly the geographic origin of the species. Both the comparison of the eastern South African and Namibian lineages and the distribution within eastern South Africa show the potential for long-distance dispersal in few generations via colony propagation.  相似文献   

5.
苹果蠹蛾是重要的世界性果树害虫,寄主广泛,通过形成各种生态型或种群适应新入侵环境,对当地果品生产造成严重损失。本文综述了国内外有关苹果蠹蛾遗传多样性的研究进展。相关研究表明,寄主植物、地理隔离和杀虫剂等因素影响种群间的遗传多样性和遗传分化。其中,地理隔离是种群间形成遗传分化的主要原因之一,寄主分布格局、气候条件、虫体飞行能力和人为活动等因素都会影响种群间遗传分化的程度。苹果蠹蛾是我国重要的入侵害虫,我国东北地区和西北地区的苹果蠹蛾种群具有不同的遗传多样性水平,并且种群间有一定程度的分化,今后需要进一步研究影响我国苹果蠹蛾种群遗传的重要因素,明确该虫种群间分化情况、入侵来源和扩散路径,这对于延缓苹果蠹蛾在我国的扩散,制定合理有效的综合防治策略具有重要意义。  相似文献   

6.
The invasive Mediterranean fruit fly (medfly), Ceratitis capitata, is one of the major agricultural and economical pests globally. Understanding invasion risk and mitigation of medfly in agricultural landscapes requires knowledge of its population structure and dispersal patterns. Here, estimates of dispersal ability are provided in medfly from South Africa at three spatial scales using molecular approaches. Individuals were genotyped at 11 polymorphic microsatellite loci and a subset of individuals were also sequenced for the mitochondrial cytochrome oxidase subunit I gene. Our results show that South African medfly populations are generally characterized by high levels of genetic diversity and limited population differentiation at all spatial scales. This suggests high levels of gene flow among sampling locations. However, natural dispersal in C. capitata has been shown to rarely exceed 10 km. Therefore, documented levels of high gene flow in the present study, even between distant populations (>1600 km), are likely the result of human-mediated dispersal or at least some form of long-distance jump dispersal. These findings may have broad applicability to other global fruit production areas and have significant implications for ongoing pest management practices, such as the sterile insect technique.  相似文献   

7.
The isolation-by-distance model predicts that genetic similarity between populations will decrease exponentially as the geographic distance between them increases, because of the limiting effect of geographic distance on rates of gene flow. Many studies of human populations have applied the isolation-by-distance model to genetic variation between local populations in a limited geographic area, but few have done so on a global level, and these few used different models and analytical methods. I assess genetic variation between human populations across the world using data on red blood cell polymorphisms, microsatellite DNA markers, and craniometric traits. The isolation-by-distance model provides an excellent fit to average levels of genetic similarity within geographic distance classes for all three data sets, and the rate of distance decay is the same in all three. These results suggest that a common pattern of global gene flow mediated by geographic distance is detectable in diverse genetic and morphological data. An alternative explanation is that the correspondence between genetic similarity and geographic distance reflects the history of dispersal of the human species out of Africa.  相似文献   

8.
African savannah elephants (Loxodonta africana) occur in fragmented and isolated populations across southern Africa. Transfrontier conservation efforts aim at preventing the negative effects of population fragmentation by maintaining and restoring linkages between protected areas. We sought to identify genetic linkages by comparing the elephants in Kruger National Park (South Africa) to populations in nearby countries (Botswana, Mozambique, Zambia and Zimbabwe). We used a 446 base pair mitochondrial DNA (mtDNA) control region fragment (141 individuals) and 9 nuclear DNA (nDNA) microsatellite markers (69 individuals) to investigate phylogenetic relationships and gene flow among elephant populations. The mtDNA and nDNA phylogeographic patterns were incongruent, with mtDNA patterns likely reflecting the effects of ancient female migrations, with patterns persisting due to female philopatry, and nDNA patterns likely reflecting male-mediated dispersal. Kruger elephant heterozygosity and differentiation were examined, and were not consistent with genetic isolation, a depleted gene pool or a strong founder effect. Mitochondrial DNA geographic patterns suggested that the Kruger population was founded by elephants from areas both north and south of Kruger, or has been augmented through migration from more than one geographic source. We discuss our findings in light of the need for conservation initiatives that aim at maintaining or restoring connectivity among populations. Such initiatives may provide a sustainable, self-regulating management approach for elephants in southern Africa while maintaining genetic diversity within and gene flow between Kruger and nearby regions.  相似文献   

9.
The Berg River redfin (Pseudobarbus burgi) is a critically endangered endemic cyprinid from South Africa. We investigated mitochondrial DNA control region variation among specimens representative of five populations drawn from two adjacent river systems. Phylogenetic analyses, a minimum spanning network, and an analysis of molecular variance underscore the pronounced genetic separation of redfins originating from the geographically closely allied Verlorevlei and Berg Rivers, two populations that may have remained isolated since the Pleistocene. Despite a lack of geographic structuring within the Berg River, historic female gene flow among the upper and middle/lower parts of the river appears to be limited and the contemporary populations are probably isolated due to deterioration of the mainstream of the river. Our results suggest that the Berg and Verlorevlei populations should be managed as distinct conservation units. We encourage the use of sanctuaries, particularly by private landowners within both river systems, as this approach may contribute effectively to preserving genetic diversity within the species.  相似文献   

10.
The distribution, spatial pattern and population dynamics of a species can be influenced by differences in the environment across its range. Spatial variation in climatic conditions can cause local populations to undergo disruptive selection and ultimately result in local adaptation. However, local adaptation can be constrained by gene flow and may favour resident individuals over migrants—both are factors critical to the assessment of invasion potential. The Natal fruit fly (Ceratitis rosa) is a major agricultural pest in Africa with a history of island invasions, although its range is largely restricted to south east Africa. Across Africa, C. rosa is genetically structured into two clusters (R1 and R2), with these clusters occurring sympatrically in the north of South Africa. The spatial distribution of these genotypic clusters remains unexamined despite their importance for understanding the pest's invasion potential. Here, C. rosa, sampled from 22 South African locations, were genotyped at 11 polymorphic microsatellite loci and assessed morphologically using geometric morphometric wing shape analyses to investigate patterns of population structure and determine connectedness of pest‐occupied sites. Our results show little to no intraspecific (population) differentiation, high population connectivity, high effective population sizes and only one morphological type (R2) within South Africa. The absence of the R1 morphotype at sites where it was previously found may be a consequence of differences in thermal niches of the two morphotypes. Overall, our results suggest high invasion potential of this species, that area‐wide pest management should be undertaken on a country‐wide scale, and that border control is critical to preventing further invasions.  相似文献   

11.
Gene flow based on the spatial distribution of rare alleles at 25 gene loci was estimated in 15 populations of Ceratitis capitata (Wiedemann) from different parts of the world. Estimates of Nm, the number of migrants exchanged per generation among populations in different regions of the world, appeared to be quite similar, ranging from 3.36 in tropical Africa to 2.94 in the New World and 2.72 in Mediterranean basin populations. This suggests that gene flow among neighbouring populations of medfly is quite extensive. The genetic differentiation in American, Mediterranean and African populations was related to major climatic differences between North and South. These differences arise mainly from five loci that showed gene frequency patterns suggestive of latitudinal clines in allele frequencies. The clinal variation was such that tropical-subtropical populations were more heterozygous than temperate populations. It was concluded that gene flow, counteracting the forces of natural selection and genetic drift, determines the extent to which geographical populations of C. capitata are differentiated.  相似文献   

12.
The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.  相似文献   

13.
Genetic differentiation may exist among sympatric populations of a species due to long‐term associations with alternative hosts (i.e. host‐associated differentiation). While host‐associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host‐associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human‐built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock‐down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host‐specific populations. Within locations human‐associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human‐mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association.  相似文献   

14.
The codling moth (Cydia pomonella L., Tortricidae, Lepidoptera) is an important pest of pome fruit with global distribution. It has adapted successfully to different habitats by forming various ecotypes and populations, often termed strains, which differ among each other in several morphological, developmental, and physiological features. Many strains of Cydia pomonella have developed resistance against a broad range of chemically different pesticides. Obviously, pesticide-resistant strains must have a genetic basis inherent to the gene pool of codling moth populations, and this deserves our particular attention. The primary intention of the present study was to contribute novel information regarding the evolutionary phylogeny and phylogeography of codling moth populations in Central Europe. In addition, we aimed at testing the hypothesis that differential biological traits and response patterns towards pesticides in codling moth populations may be reflected at a mitochondrial DNA level. In particular, we wanted to test if pesticide resistance in codling moths is associated repeatedly and independently with more than one mitochondrial haplotype. To this end, we analyzed mitochondrial DNA and constructed phylogenetic trees based on three mitochondrial genes: cytochrome oxidase I (COI), the A+T-rich region of the control region (CR), and the nicotinamide adenine dinucleotide dehydrogenase subunit 5 (ND5). The results indicate that Central European populations of Cydia pomonella are clearly divided in two ancient clades. As shown by means of a molecular clock approach, the splitting of the two clades can be dated to a time period between the lower and middle Pleistocene, about 1.29-0.20 million years ago. It is assumed that the cyclic changes of warm and cold periods during Pleistocene may have lead to the geographic separation of codling moth populations due to glaciation, giving rise to the formation of the two separate refugial clades, as already shown for many other European animal species. Due to their inclination towards developing novel detoxification gene variants, codling moth individuals from both clades independently and multifariously may have developed pesticide resistance, and this process may be ongoing. During their more recent evolutionary history, natural events such as the gradual disappearance of climate-specific geographic barriers, as well as human-aided dispersal in recent historic times, may have allowed codling moth haplotypes from the original clades to interbreed and completely merge again, creating a globally successful insect species with a gene pool capable of responding to novel selective challenges by rapid adaptation.  相似文献   

15.
The Neotropical myrmecophytic tree Cordia alliodora hosts symbiotic Azteca ants in most of its widespread range. The taxonomy of the genus Azteca is notoriously difficult, which has frequently obscured species identity in ecological studies. We used sequence data from one mitochondrial and four nuclear loci to infer phylogenetic relationships, patterns of geographic distribution, and timing of diversification for 182 colonies of five C. alliodora-dwelling Azteca species from Mexico to Colombia. All morphological species were recovered as monophyletic, but we identified at least five distinct genetic lineages within the most abundant and specialized species, Azteca pittieri. Mitochondrial and nuclear data were concordant at the species level, but not within species. Divergence time analyses estimated that C. alliodora-dwelling Azteca shared a common ancestor approximately 10-22million years ago, prior to the proposed arrival of the host tree in Middle America. Diversification in A. pittieri occurred in the Pleistocene and was not correlated with geographic distance, which suggests limited historical gene flow among geographically restricted populations. This contrasts with the previously reported lack of phylogeographic structure at this spatial scale in the host tree. Climatic niches, and particularly precipitation-related variables, did not overlap between the sites occupied by northern and southern lineages of A. pittieri. Together, these results suggest that restricted gene flow among ant populations may facilitate local adaptation to environmental heterogeneity. Differences in population structure between the ants and their host trees may profoundly affect the evolutionary dynamics of this widespread ant-plant mutualism.  相似文献   

16.
Tropical herbivorous insects are astonishingly diverse, and many are highly host‐specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host‐specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent‐wide analyses reveal – in all but one instance – that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use.  相似文献   

17.
We report patterns of genetic variation based on microsatellite, allozyme and mitochondrial control region markers in nyala from geographic locations sampled in South Africa, Mozambique, Malawi and Zimbabwe. Highly significant differences were observed among allele frequencies at three microsatellite loci between populations from KwaZulu-Natal, Limpopo and Malawi, with the Malawi and KwaZulu-Natal groupings showing the highest differentiation (RST=0.377). Allozyme frequencies showed minor, non-statistically significant regional differences among the South African populations, with maximum FST values of 0.048–0.067. Mitochondrial DNA analyses indicated a unique haplotype in each location sampled. Since none of these indices of population differentiation showed significant correlation to absolute geographic distance, we conclude that geographic variation in this species is probably a function of a distribution pattern stemming from habitat specificity. It is suggested that translocations among geographically distant regional populations be discouraged at present, pending a more elaborate investigation. Transfer of native individuals among local populations may, however, be required for minimizing the likelihood of inbreeding depression developing in small captive populations.  相似文献   

18.
Both mtDNA variation and allozyme data demonstrate that geographic groupings of different color morphs of the starfish Linckia laevigata are congruent with a genetic discontinuity between the Indian and Pacific Oceans. Populations of L. laevigata sampled from Thailand and South Africa, where an orange color morph predominates, were surveyed using seven polymorphic enzyme loci and restriction fragment analysis of a portion of the mtDNA including the control region. Both allozyme and DNA data demonstrated that these populations were significantly genetically differentiated from each other and to a greater degree from 23 populations throughout the West Pacific Ocean, where a blue color morph is predominant. The genetic structure observed in L. laevigata is consistent with traditional ideas of a biogeographic boundary between the Indian and Pacific Oceans except that populations several hundreds kilometers off the coast of north Western Australia (Indian Ocean) were genetically similar to and had the same color morphs as Pacific populations. It is suggested that gene flow may have continued (possibly at a reduced rate) between these offshore reefs in Western Australia and the West Pacific during Pleistocene falls in sea level, but at the same time gene flow was restricted between these Western Australian populations and those in both Thailand and South Africa, possibly by upwellings. The molecular data in this study suggest that vicariant events have played an important role in shaping the broadscale genetic structure of L. laevigata. Additionally, greater genetic structure was observed among Indian Ocean populations than among Pacific Ocean populations, probably because there are fewer reefs and island archipelagos in the Indian Ocean than in the Pacific, and because present-day surface ocean currents do not facilitate long-distance dispersal.  相似文献   

19.
Understanding speciation requires discerning how reproductive barriers to gene flow evolve between previously interbreeding populations. Models of sympatric speciation for phytophagous insects posit that reproductive isolation can evolve in the absence of geographic isolation as a consequence of an insect shifting and ecologically adapting to a new host plant. One important adaptation contributing to sympatric differentiation is host-specific mating. When organisms mate in preferred habitats, a system of positive assortative mating is established that facilitates sympatric divergence. Models of host fidelity generally assume that host choice is determined by the aggregate effect of alleles imparting positive preferences for different plant species. But negative effect genes for avoiding nonnatal plants may also influence host use. Previous studies have shown that apple and hawthorn-infesting races of Rhagoletis pomonella flies use volatile compounds emitted from the surface of fruit as key chemosensory cues to recognize and distinguish between their host plants. Here, we report results from field trials indicating that in addition to preferring the odor of their natal fruit, apple and hawthorn flies, and their undescribed sister species infesting flowering dogwood (Cornus florida), also avoid the odors of nonnatal fruit. We discuss the implications of nonnatal fruit avoidance for the evolutionary dynamics and genetics of sympatric speciation. Our findings reveal an underappreciated role for habitat avoidance as a potential postmating, as well as prezygotic, barrier to gene flow.  相似文献   

20.
Cryptococcus gattii is a ubiquitous eukaryotic pathogen capable of causing life-threatening infections in a wide variety of hosts, including both immunocompromised and immunocompetent humans. Since infections by C. gattii are predominantly obtained from environmental exposures, understanding environmental populations of this pathogen is critical, especially in countries like India with a large population and with environmental conditions conducive for the growth of C. gattii. In this study, we analysed 109 isolates of C. gattii obtained from hollows of nine tree species from eight geographic locations in India. Multilocus sequence typing was conducted for all isolates using nine gene fragments. All 109 isolates belonged to the VGI group and were mating type α. Population genetic analyses revealed limited evidence of recombination but unambiguous evidence for clonal reproduction and expansion. However, the observed clonal expansion has not obscured the significant genetic differentiation among populations from either different geographic areas or different host tree species. A positive correlation was observed between genetic distance and geographic distance. The results obtained here for environmental populations of C. gattii showed both similarities and differences with those of the closely related Cryptococcus neoformans var. grubii from similar locations and host tree species in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号