首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is a challenge to measure sexual selection because both stochastic events (chance) and deterministic factors (selection) generate variation in individuals' reproductive success. Most researchers realize that random events ('noise') make it difficult to detect a relationship between a trait and mating success (i.e. the presence of sexual selection). There is, however, less appreciation of the dangers that arise if stochastic events vary systematically. Systematic variation makes variance-based approaches to measuring the role of selection problematic. This is why measuring the opportunity for sexual selection (I(s) and I(mates)) is so vulnerable to misinterpretation. Although I(s) does not measure actual sexual selection (because it includes stochastic variation in mating/fertilization success) it is often implicitly assumed that it will be correlated with the actual strength of sexual selection. The hidden assumption is that random noise is randomly distributed across populations, species or the sexes. Here we present a simple numerical example showing why this practice is worrisome. Specifically, we show that chance variation in mating success is higher when there are fewer potential mates per individual of the focal sex [i.e. when the operational sex ratio (OSR), is more biased]. This will lead to the OSR covarying with I(s) even when the strength of sexual selection is unaffected by the OSR. This can generate false confidence in identifying factors that determine variation in the strength of sexual selection. We emphasize that in nature, even when sexual selection is strong, chance variation in mating success is still inevitable because the number of mates per individual is a discrete number. We hope that our worked example will clarify a recent debate about how best to measure sexual selection.  相似文献   

2.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   

3.
Sexual selection can explain major micro‐ and macro‐evolutionary patterns. Much of current theory predicts that the strength of sexual selection (i) is driven by the relative abundance of males and females prepared to mate (i.e. the operational sex ratio, OSR) and (ii) can be generally estimated by calculating intra‐sexual variation in mating success (e.g. the opportunity for sexual selection, Is). Here, we demonstrate the problematic nature of these predictions. The OSR and Is only accurately predict sexual selection under a limited set of circumstances, and more specifically, only when mate monopolization is extremely strong. If mate monopolization is not strong, using OSR or Is as proxies or measures of sexual selection is expected to produce spurious results that lead to the false conclusion that sexual selection is strong when it is actually weak. These findings call into question the validity of empirical conclusions based on these measures of sexual selection.  相似文献   

4.
The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index −0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation.  相似文献   

5.
Evolutionary biologists have developed several indices, such as selection gradients (β) and the opportunity for sexual selection (Is), to quantify the actual and/or potential strength of sexual selection acting in natural or experimental populations. In a recent paper, Klug et al. (J. Evol. Biol. 23 , 2010, 447) contend that selection gradients are the only legitimate metric for quantifying sexual selection. They argue that Is and similar mating‐system‐based metrics provide unpredictable results, which may be uncorrelated with selection acting on a trait, and should therefore be abandoned. We find this view short‐sighted and argue that the choice of metric should be governed by the research question at hand. We describe insights that measures such as the opportunity for selection can provide and also argue that Klug et al. have overstated the problems with this approach while glossing over similar issues with the interpretation of selection gradients. While no metric perfectly characterizes sexual selection in all circumstances, thoughtful application of existing measures has been and continues to be informative in evolutionary studies.  相似文献   

6.
7.
Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (<10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations.  相似文献   

8.
Operational sex ratio (OSR) has been traditionally thought ofas a force imposing competition for mates rather than also acue used to regulate the intrasexual competition individualsencounter. To assess whether eastern red-spotted newts, Notophthalmusviridescens, could appropriately compare OSRs, we quantifiedfield responses to traps containing four males, a sexually receptivefemale, four males plus a female, or nothing as a control. Earlyin the breeding season, males from two populations chose competitivemating opportunities over no mating opportunity at all, butgenerally preferred less competitive mating prospects. Laterin the breeding season, as the OSR of newt populations becomesmore male biased, males accordingly increased their acceptanceof intrasexual competition. Females avoided groups of four males,and for both sexes, avoidance of male-biased courting groupsincreased their probability of amplexus courtship. We then isolatedan approximately 33-kD protein from male cloacal glands thatwas used by males to compare OSRs. To our knowledge, this proteinrepresents the first isolated and characterized component ofan olfactory cue used to evaluate OSR. These results supporttwo important principles regarding mating systems: (1) OSR cansomewhat paradoxically be both the source imposing competitionfor mates and the source used to reduce it, and (2) analogousto the sex in short supply often being "choosy" selecting mates,the sex in excess (here, males) appears to be choosy about itsacceptance of intrasexual competition.  相似文献   

9.
We investigated a Lake Victoria cichlid with a complex colour polymorphism that apparently represents one original species and two incipient species, all of which are sympatric. In laboratory breeding experiments we observed sex ratio distortion in certain matings between original and incipient species. Mate choice experiments show that males of the incipient species exhibit mating preferences against the original species, and males and females of the original species exhibit strong mating preferences against the incipient species. Mating preferences might evolve by sex ratio selection to avoid matings with distorted progeny sex ratios. Phenotype frequencies in nature suggest that mating preferences translate into mating frequencies, thus restricting gene flow and exerting disruptive sexual selection between the original and incipient species. The incipient species do not differ in morphology or ecology from the original species, implying that colour polymorphism, associated with sex ratio distortion, can be an incipient stage in sympatric speciation, and that disruption of gene flow can precede ecological differentiation.  相似文献   

10.
Signa are structures of the inner wall of the female corpus bursae (structure where males deposit a spermatophore during copulation) of many Lepidoptera that assist in tearing open spermatophores. In this paper, three hypotheses on the evolutionary origin of signa are proposed. The first hypothesis considers natural selection pressures arising from ecological changes that favor an increase in oviposition rate as the force behind the evolution of signa. The other two hypotheses involve sexual selection. The second hypothesis proposes that sexually antagonistic coevolution is responsible of the evolution of signa: According to this hypothesis, the inverse relation between the length of the female's refractory period and the amount of ejaculate remaining in her corpus bursae, observed in most Lepidoptera studied, selects in males a decreased rate of spermatophore digestion (e.g. a thicker spermatophore envelope or a higher chitin content) that increases the length of the refractory period beyond the female's optimum; in response, females evolved signa as a counteradaptation to restore the female's optimum by increasing the rate of spermatophore digestion. The last hypothesis considers that signa may have evolved as a female device for cryptic choice of males based on the ability of these to influence the length of post-copulatory female refractory period. The different hypotheses make different predictions of the sequence of appearance of specific ecological factors and novel phenotypic traits through evolutionary time. Therefore, testing the relative importance of the hypotheses requires a formal comparative analysis.  相似文献   

11.
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.  相似文献   

12.
It has been suggested that male achievement in sports and athletics is correlated with a putative measure of prenatal testosterone the 2nd to 4th digit ratio (2D:4D). It is not known whether this association also extends to females, or whether the association results from an effect of testosterone on behavior (such as exercise frequency) or on physical fitness. Here, we report for the first time data from two studies which consider associations between 2D:4D and physical fitness in females in addition to males: Study I--in a sample of teenage boys (n = 114) and girls (n = 175), their 'physical education grade' was negatively associated with 2D:4D of the right hand (boys), and right and left hand (girls), and Study II-among a sample of young men (n = 102) and women (n = 77), a composite measure of physical fitness was negatively related to right hand 2D:4D in men and left hand 2D:4D in women. We conclude that 2D:4D is negatively related to physical fitness in both men and women. In Study II, there was evidence that the relationship between physical fitness and 2D:4D in men was mediated through an association with exercise frequency. Thus, 2D:4D in males may be a negative correlate of frequent exercise which then relates to achievement in sports and athletics.  相似文献   

13.
Females are larger than males in most invertebrate taxa, a phenomenon believed to result from the pressures exerted on female body size by size-dependent fecundity. Male-male competition, which can act on male body size, is not thought to play as important a role in the evolution of sexual size dimorphism in invertebrates as it apparently does in some vertebrate groups. Here, using a comparative approach, the relationship between sexual size dimorphism and adult sex ratio is examined across 46 natural populations (41 species) and 30 experimental populations (21 species) of parasitic nematodes. If male-male competition via physical contests is important, relative male size should increase as the sex ratio becomes less female-biased. This is exactly what was found in the analyses, where residuals of male size regressed on female size were used as measures of sexual size dimorphism. This result was independent of any phylogenetic influences, and was obtained for both natural and experimental nematode populations. In addition, there was no evidence of any Allometric relationship between male and female body size. The average ratio of male size to female size was roughly constant across all species and independent of body size. The results are consistent with a role for male-male competition in explaining specific deviations from the average ratio of male to female body size, suggesting a significant role for sexual selection in the evolution of nematode body sizes.  相似文献   

14.
Although there are several hypotheses for sex-specific ornamentation, few studies have measured selection in both sexes. We compare sexual selection in male and female dance flies, Rhamphomyia longicauda (Diptera: Empididae). Swarming females display size-enhancing abdominal sacs, enlarged wings and decorated tibiae, and compete for nuptial gifts provided by males. Males preferentially approach large females, but the nature of selection and whether it is sex-specific are unknown. We found contrasting sexual selection for mating success on structures shared by males and females. In females, long wings and short tibiae were favoured, whereas males with short wings and long tibiae had a mating advantage. There was no assortative mating. Females occupying potentially advantageous swarm positions were large and, in contrast to selection for mating success, tended to have larger tibiae than those of rivals. We discuss our findings in the context of both the mating biology of dance flies, and the evolution of sexual dimorphism in general.  相似文献   

15.
We analyze models of evolution of sex ratio conditional on habitat quality and with sex specific dispersal. Previous analysis concluded that the main constraint on sex ratio is habitat choice and leads to overproduction of the most dispersing sex in low quality habitat. Here, we analyze three models with finite local populations and show that constraints on sex ratio can balance constraints on habitat choice. In the first model, dispersal rates are fixed. In the second, sex specific dispersal can evolve independently of the habitat quality. These models suggests that sex ratio evolution can lead to higher global dispersal rates (mean of male and female dispersal rates) from high quality habitats. In the last model dispersal evolves conditionally with both sex and habitat. Our models suggests that conditions for overproduction of the most dispersing sex in high quality habitat are frequent. The predictions of the models with evolving dispersal contrast with patterns generally described in nature. We discuss possible reasons of this difference.  相似文献   

16.
We examined the impact of environmental conditions on the sexpheromone and mating behavior of the cockroach, Nauphoeta cinerea.Previous research on this species has shown that female behaviorduring courtship reflects female mate choice, male behaviorcorrelates with male social status, and the male sex pheromoneis the character used by females to assess males. In the presentstudy, males and females were allowed to develop from adultemergence to sexual maturity in either a high- or low-qualityenvironment. The environment affected the quantities of sexpheromone components. We found significantly less 3-hydroxy-2-butanoneand 4-ethyl-2-methoxyphenol, but not 2-methylthiazolidine, inthe pheromone glands of males from a poor environment. Pheromonequality was also affected; the ratios involving 2-methylthiazolidinewere altered, while the ratio 3-hydroxy-2-butanone to 4-ethyl-2-methoxyphenoldid not change. Development to sexual maturity under these environmentalconditions also influenced male and female sexual behavior.Male courtship activity reflected environmental influences;males from the low-quality environment took longer to initiatecourtship and spent more time copulating with females from allenvironments. Male quality, as assessed by females, was alsoaffected by their environment. Females were slower to respondto the courtship of males from the poor environment, regardlessof the females' own rearing environments. However, females fromthe low-quality environment also took longer to respond to thecourtship, and required more courtship, regardless of the males'rearing environments. Thus, poor environments also increasefemale choosiness. However, there was only one significant interactionterm, suggesting that the environmental effects are generaland that females do not show adaptive plasticity in mate choice.Studies of sexual selection that consider the effects of variableenvironments on behavior as well as the sexually selected morphologyin other systems are likely to provide new insights into thisevolutionary process  相似文献   

17.
Summary In a non-Fisherian genetic model I have shown that sexual displays can evolve even if displays are not directly and unconditionally preferred by females (a basic requirement in any Fisherian model), provided that they amplify previously recognized differences in male quality. Here I show how this amplifying mechanism interacts with the traditional Fisherian mechanism of sexual selection. The theory that integrates these two mechanisms provides a more robust, entirely selective scenario of the evolution of mating preferences and sexual displays.  相似文献   

18.
Summary Species of parasitic Hymenoptera that manifest female-biased sex ratios and whose offspring mate only with the offspring of the natal patch are assumed to have evolved biased sex ratios because of Local Mate Competition (LMC). Off-patch matings, i.e. outcrossing, are inconsistent with the conditions favouring biased sex ratios because they foster a mating structure approaching panmixia. Such a mating structure favours parents who invest equally in daughters and sons, assuming the production of each sex is of equal cost.Pachycrepoideus vindemiae (Rondani) is a solitary pupal parasitoid of patchily distributed frugivorousDrosophila, whose offspring manifest a female-biased sex ratio. Thus this species appears to manifest a population structure and progeny sex ratio consistent with LMC. However, preliminary observations and subsequent greenhouse experiments suggest that the males participate in off-patch matings and that this propensity is unlikely to be an experimental artefact. FemaleP. vindemiae dispersed from patches in which either the males were lacking (12% of the emigrant females), both resident (sibling) and immigrant males were present (23% of the females), only immigrant males were present (14% of the females), or their opportunity to mate could not be determined (14% of the females). Of the 12% that emigrated from a patch lacking males, an estimated 7% mated at an oviposition site and 5% remained unmated, presumably because they arrived at an oviposition site that lacked males before they were dissected to determine whether they were inseminated. Thus the degree of bias in the sex ratios of the progeny (18% males), coupled with the suggested outcrossing potential from the experiments (26–37%), is inconsistent with the assumptions of LMC or variants of it, i.e. asynchronous brood maturation. Thus the explanation for a biased sex ratio in the offspring ofP. vindemiae remains a conundrum. More importantly,P. vindemiae does not appear to be an isolated example.  相似文献   

19.
For several decades, behavioral ecologists have studied theeffects of the environment on the behavior of individuals;but only fairly recently they have started to ask the reversequestion: how do the behavioral strategies of individuals affectthe composition and dynamics of populations and communities?Although intuitively obvious, this feedback from individualto higher levels is difficult to demonstrate, except in systemswith exceptionally fast and marked responses of the populationsto the behavior of its members. Such a system exists in sperm-dependentspecies. In European water frogs, for instance, successfulreproduction of a hybrid species (R. esculenta, genotype LR)requires mating with one of its parental species (R. lessonae,genotype LL), except in the rare cases where hybrids are triploid.The sexual host LL, however, should avoid matings with the sexual parasite LR, because the resulting LR offspring willeliminate the L genome from their germ line. In this studywe investigate how this conflict is solved. Since water froghybrids come in both sexes, rather than as females only likein other sperm-dependent systems, we performed the tests withboth females and males. One individual was given a choice betweentwo individuals of the opposite sex, one an LL and the otheran LR. In both species, females showed the predicted preferencefor LL males, whereas males did not discriminate between LLand LR females. On the individual level, we interpret the sexdifference in choosiness by the lower costs from mating withthe wrong species (LR) and the higher benefits from matingwith large individuals in males than in females. In "normal"species, male preference for large (i.e. more fecund) femalesis advantageous, but in this system such a choice can resultin mating with the larger LR females. With respect to the structureand dynamics of mixed populations, we discuss that the observed female preference is consistent with the higher mating successof LL males found in nature. Hence, mate female choice is astrong candidate for a mechanism promoting coexistence of thesperm-dependent hybrid and its sexual host. This confirms predictionsfrom previous theoretical models.  相似文献   

20.
We investigated possible pre‐hatching mechanisms of sex‐differential investment by females that may contribute to offspring sex‐ratio adjustment enhancing the fitness return from reproductive effort in the spotless starling (Sturnus unicolor). We found a seasonal shift in sex ratio from daughters to sons as the season advances. Furthermore, the probability of breeding at 1‐year old and recruitment into the breeding population in daughters is associated with laying date but not with mass at fledging. The reverse is true for males which rarely bred at 1‐year old. We also found that eggs containing female embryos are significantly heavier than those containing males in spite of the slight sexual dimorphism in favour of males. This suggests maternal control of provisioning, favouring daughters that may balance sibling mortality and competition with their brothers. Our results on seasonal variation in sex ratio and differential egg provisioning are consistent with an adaptive tactic in which mothers increase their reproductive return by enhancing the probability that daughters survive and breed in their first year of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号