首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Haloferax mediterranei can use nitrate as sole nitrogen source during aerobic growth. We report here the purification and biochemical characterisation of the assimilatory nitrate reductase (EC 1.6.6.2) from H. mediterranei. The enzyme, as isolated, was composed of two subunits (105+/-1.3 kDa and 50+/-1.3 kDa) and behaved as a dimer during gel filtration (132+/-6 kDa). A pH of 9 and elevated temperatures up to 80 degrees C (at 3.1 M NaCl) are necessary for optimum activity. The enzyme stability and activity of the enzyme depend upon the salt concentration. Reduced methyl viologen was as effective as the natural electron donor ferredoxin in the catalytic process. In contrast, NADPH and NADH, which are electron donors in nitrate reductases from different non-photosynthetic bacteria, were ineffective.  相似文献   

2.
The nitrite reductase from the extreme halophilic archaeon, Haloferax mediterranei, has been purified and characterised. H. mediterranei is capable of growing in a minimal medium (inorganic salts and glucose as a carbon source) with nitrate as the only nitrogen source. The overall purification was 46-fold with about 4% recovery of activity. The enzyme is a monomeric protein of approximately 66 kDa. A pH of 7.5 and high temperatures up to 60 degrees C are necessary for optimum activity. Reduced methyl viologen has been found to be an electron donor as effective as ferredoxin. NADPH and NADH, which are electron donors in nitrite reductases from different non-photosynthetic bacteria, were not effective with nitrite reductase from H. mediterranei.  相似文献   

3.
A Paracoccus denitrificans strain (M6Ω) unable to use nitrate as a terminal electron acceptor was constructed by insertional inactivation of the periplasmic and membrane-bound nitrate reductases. The mutant strain was able to grow aerobically with nitrate as the sole nitrogen source. It also grew anaerobically with nitrate as sole nitrogen source when nitrous oxide was provided as a respiratory electron acceptor. These growth characteristics are attributed to the presence of a third, assimilatory nitrate reductase. Nitrate reductase activity was detectable in intact cells and soluble fractions using nonphysiological electron donors. The enzyme activity was not detectable when ammonium was included in the growth medium. The results provide an unequivocal demonstration that P. denitrificans can express an assimilatory nitrate reductase in addition to the well-characterised periplasmic and membrane-bound nitrate reductases. Received: 12 August 1996 / Accepted: 29 October 1996  相似文献   

4.
P.A. Edge  T. R. Ricketts 《Planta》1977,136(2):159-162
Studies on the mean cellular carbohydrate contents of Platymonas striata Butcher under conditions of nitrogen-starvation, and after refeeding these starved cultures with either nitrate or ammonium ions (growing under continuous illumination or with an alternating light/dark regime) have shown that nitrogen-starved cells accumulated abnormal amounts of cellular carbohydrate and that nitrogen refeeding produced a marked drop in the cellular carbohydrate. Cells grown in a light/dark regime accumulated less carbohydrates than those grown in continuous light. The mean cellular carbohydrate levels 16 h after nitrogen refeeding were still much in excess of those of cells grown with normal nutrition. It was therefore suggested that the differences in nitrogen uptakes in this period — when comparing either the uptake of cells grown in continuous light with that of cells grown in a light/dark regime; or when comparing the uptakes of cells presented with either nitrate or ammonium ions and grown in a light/dark regime —cannot be directly due to shortages of carbohydrate for the provision of carbon skeletons for nitrogen assimilation.  相似文献   

5.
The glutamine synthetase (EC 6.3.1.2) from the haloarchaeon Haloferax mediterranei has been purified and characterized in order to understand the ammonium assimilation in haloarchaea. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel-filtration chromatography, the enzyme consists of eight subunits of 51.7 kDa, suggesting that this enzyme belongs to the glutamine synthetase type II. The purified enzyme has been characterized with respect to its optimum temperature (45 degrees C) and pH value (8.0). The optimal NaCl or KCl concentrations for the reaction were 0.5 and 0.25 M, respectively. The effect of l-methionine-d, l-sulphoximine and different divalent metal ions has also been tested. The glutamine synthetase presented here is unusual; it shows the typical characteristic of eukaryotic and soil bacteria glutamine synthetases.  相似文献   

6.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

7.
Summary In pot experiments the NO 3 accumulation and the occurrence of nitrate reductase (NR) capacity of wheat plants were investigated depending on late N applications at tillering, shooting and heading. NO 3 is preferentially accumulated in the stems, while NR dominates in the leaves. NO 3 accumulation is enhanced by late N treatments especially if N supply at seeding is sufficient. NR capacity of the plants is stimulated by late nitrogen supply, but its increment rates decrease with increasing NO 3 accumulation.  相似文献   

8.
Three solution experiments were performed to test the importance of NH 4 + versus NO 3 - +NH 4 + to growth of 23 wild-forest and open-land species, using field-relevant soil solution concentrations at pH 4.5. At N concentrations of 1–200 M growth increased with increasing N supply in Carex pilulifera, Deschampsia flexuosa, Elymus caninus and Bromus benekenii. Geum urbanum was the most N demanding species and had little growth below 200 M. The preference for NH 4 + or NO 3 - +NH 4 + was tested also at pH 4.0; no antagonism was found between NH 4 + and H+, as indicated by similar relative growth in both of the N treatments at both pH levels. Growth in solution with NH 4 + relative to NO 3 - +NH 4 + , 200 M, was negatively related to the mean pH of the field occurrence of the species tested; acid-tolerant species grew equally well with only NH 4 + as with NO 3 - +NH 4 + (Oxalis acetosella, Carex pilulifera, Festuca gigantea, Poa nemoralis, Deschampsia flexuosa, Stellaria holostea, Rumex acetosella), while species of less acid soils were favoured by NO 3 - +NH 4 + (Urtica dioica, Ficaria verna, Melandrium rubrum, Aegopodium podagraria, Geum urbanum, Bromus benekenii, Sanguisorba minor, Melica ciliata, Silene rupestris, Viscaria vulgaris, Plantago lanceolata). Intermediate species were Convallaria majalis, Elymus caninus, Hordelymus europaeus and Milium effusum. No antagonism between NH 4 + and Ca2+, Mg2+ and K+ was indicated by the total uptake of the elements during the experiment.  相似文献   

9.
Summary The effects of different nitrogen sources (NH4, NO3, and NH4 NO3) on the uptake of copper by wheat and barley growing in solution culture were compared in three experiments. Both the copper concentration and weight gain of shoots and roots were found to decrease in the order NO3>NH4 NO3>NH4 irrespective of the solution copper concentration. Ammonium nitrogen was also found to decrease the copper concentration of wheat grown on a copper deficient soil compared with a nitrate source of nitrogen. Increasing concentrations of ammonium ions in solution culture caused ammonium toxicity and reduced both plant copper concentrations and vegetative yield. Biochemical investigations using paper chromatography revealed that the amino acid asparagine was the major detoxification product of ammonia in wheat. Copper deficient plants were found to have elevated levels of amino acids compared with controls, irrespective of the nitrogen source.  相似文献   

10.
Batch cultures of Chlorella fusca excreted nitrite into the medium if gassed with air (0.03% CO2), but they did not if supplied with air containing 5% CO2. After a change from high to low CO2 concentration in the gas stream, nitrite excretion started immediately. After an increase in CO2 concentration to 5%, nitrite uptake started within only 30 min. Changes of in-vitro activities of nitrate reductase, nitrite reductase and glutamine synthetase did not correspond to changes of nitrite concentration in the medium and therefore could not explain these observations. A nitrite-binding site, whose activity corresponded with both nitrite excretion and uptake, was detected at the chloroplast envelope. From these data an additional regulatory step in the assimilatory nitrate-reduction sequence is suggested. This includes an envelopeprotein fraction probably regulating the availability of nitrite within the chloroplast.Abbreviations FMN riboflavin 5-phosphate - GS glutamine synthetase - NIR nitrite reductase - NR nitrate reductase  相似文献   

11.
Large AT  Kovacs E  Lund PA 《FEBS letters》2002,532(3):309-312
The halophilic archaeon Haloferax volcanii has three genes encoding type II chaperonins, named cct1, cct2 and cct3. We show here that the three CCT proteins are all expressed but not to the same level. All three proteins are further induced on heat shock. The CCT proteins were purified by ammonium sulphate precipitation, sucrose gradient centrifugation and hydrophobic interaction chromatography. This procedure yields a high molecular mass complex (or complexes). The complex has ATPase activity, which is magnesium dependent, low salt-sensitive and stable to at least 75 degrees C. Activity requires high levels of potassium ions and was reduced in the presence of an increasing concentration of sodium ions.  相似文献   

12.
《Fungal biology》2021,125(10):764-775
Ustilago maydis can utilize nitrate as a sole source of nitrogen. This process is initiated by transporting nitrate from the extracellular environment into the cell by a nitrate transporter and followed by a two-step reduction of nitrate to ammonium via nitrate reductase and nitrite reductase enzymes, respectively. Here, we characterize the genes encoding nitrate transporter, um03849 and nitrite reductase, um03848 in U. maydis based on their roles in mating and virulence. The deletion mutants for um03848, um03849 or both genes were constructed in mating compatible haploid strains 1/2 and 2/9. In addition, CRISPR-Cas9 gene editing technique was used for um03849 gene to create INDEL mutations in U. maydis mating strains. For all the mutants, phenotypes such as growth ability, mating efficiency and pathogenesis were examined. The growth of all the mutants was diminished when grown in a medium with nitrate as the source of nitrogen. Although no clear effects on haploid filamentation or mating were observed for either single mutant, double Δum03848 Δum03849 mutants showed reduction in mating, but increased filamentation on low ammonium, particularly in the 1/2 background. With respect to pathogenesis on the host, all the mutants showed reduced degrees of disease symptoms. Further, when the deletion mutants were paired with wild type of opposite mating-type, reduced virulence was observed, in a manner specific to the genetic background of the mutant's progenitor. This background specific reduction of plant pathogenicity was correlated with differential expression of genes for the mating program in U. maydis.  相似文献   

13.
In Phormidium laminosum cells, nitrogen starvation caused a decrease in the intracellular levels of all amino acids, except glutamate, and an increase in the total level of the analyzed organic acids. The addition of nitrate or ammonium to N-starved cells resulted in substantial increases in the pool size of most amino acids. Upon addition of ammonium the total level of organic acids diminished, whereas it increased upon addition of nitrate, after a transient decay during the first minutes. Nitrogen resupply stimulated amino acid synthesis, the effect being faster and higher when ammonium was assimilated. The data indicate that nitrate and ammonium assimilation induced an enhancement of carbon flow through the glycolytic and the tricarboxylic-acid pathways to amino acid biosynthesis, with a concurrent decrease in the carbohydrate reserves. The results suggest that the availability of carbon skeletons limited the rate of ammonium assimilation, whereas the availability of reducing equivalents limited the rate of nitrate assimilation.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) This work has been supported by grants from the Spanish Ministry of Education and Science (DGICYT and PB92-0464) and the University of the Basque Country (042.310-EC203/94) M.I.T. and J.A.G. were the recipients of fellowships from the Basque Government.  相似文献   

14.
15.
Summary The main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.  相似文献   

16.
Summary Three tree species,Eucalyptus regnans (F. Muell.),E. obliqua (L'Herit.),Pinus radiata (D. Don) were grown in sand culture with different proportions of nitrate and ammonium. Nitrate Reductase Activity (NRA) was induced in root tissue of all species and in leaf tissue of the eucalypts. An increasing proportion of nitrate resulted in increasing NRA in all species and hence NRA alone is no indication of N-preference. The highest NRA was found withE. regnans, a result which has also been obtained in the mature forest. The growth ofE. regnans was least with NH4 + alone, whereas that ofE. obliqua was least with NO3 alone. The soils of matureE. regnans forest have a high potential for nitrification while those ofE. obliqua forest show little nitrification. Thus the preference for particular N sources shown by seedlings in culture is supported by related properties of mature forests. It is postulated however, that the inducibility of a high level of RNA in seedlings is more likely a result of a preference for NO3 than a cause.  相似文献   

17.
V. K. Rajasekhar  H. Mohr 《Planta》1986,169(4):594-599
Nitrate-induced and phytochrome-modulated appearance of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by externally supplied ammonium (NH 4 + ). In short-term experiments between 60 and 78 h after sowing it was found that in darkness NH 4 + —simultaneously given with NO 3 - —strongly inhibits appearance of nitrate-inducible NR and NIR whereas in continuous far-red light—which operates exclusively via phytochrome without significant chlorophyll formation —NH 4 + (simultaneously given with NO 3 - ) strongly stimulates appearance of NR. The NIR levels are not affected. This indicates that NR and NIR levels are regulated differently. In the absence of external NO 3 - appearance of NR is induced by NH4 in darkness as well as in continuous far-red light whereas NIR levels are not affected. On the other hand, in the absence of external NO 3 - , exogenous NH 4 + strongly inhibits growth of the mustard seedling in darkness as well as in continuous far-red light. This effect can be abolished by simultaneously supplying NO 3 - . The adverse effect of NH 4 + on growth (NH 4 + -toxicity) cannot be attributed to pH-changes in the medium since it was shown that neither the growth responses nor the changes of the enzyme levels are related to pH changes in the medium. Non-specific osmotic effects are not involved either.Abbreviations c continuous - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1)  相似文献   

18.
19.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

20.
Proteins of haloarchaea are remarkably unstable in low-ionic-strength solvents and tend to aggregate under standard two-dimensional (2-D) gel electrophoresis conditions, causing strong horizontal streaking. We have developed a new approach to generate 2-D maps of halophilic proteins which included washing cells with 1.5 M Tris-HCl buffer. In addition, proteins were precipitated with acetone, solubilized with urea and thiourea in the presence of the sulfobetaine detergent 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS), reduced with tributylphosphine (TBP), and separated with microrange strips of immobilized pH gradients (pH 3.9-5.1). This combination enabled the construction of highly reproducible 2-D maps of Haloferax volcanii proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号