首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Zhang Z  Sun P  Liu J  Fu L  Yan J  Liu Y  Yu L  Wang X  Yan Q 《Biochimica et biophysica acta》2008,1783(2):287-296
Lewis Y (LeY) antigen is highly expressed in a variety of human carcinomas of epithelial cell origin. Recent studies suggest functional blockade of LeY may provide a novel therapeutic approach for the treatment of cancers. However, suppressing LeY expression by genetic manipulation and its impact on neoplastic cell proliferation has not been investigated. We report here that different fucosyltransferases (FUTs) were expressed with the greatest expression of fucosyltransferase I or IV (FUT1/4), the two key enzymes for the synthesis of LeY in human epidermoid carcinoma A431 cells. Knocking down FUT1/4 expression by short interfering RNA technique dramatically reduced the expression of FUT1/4 and LeY and inhibited cell proliferation through decreasing epidermal growth factor receptor (EGFR) signaling pathway. Treatment of A431 cells that were inoculated into the nude mice with FUT1 siRNA or FUT4 siRNA greatly impeded tumor growth. Suppressing FUT1/4 expression also blocked EGF-induced tyrosine phosphorylation of EGFR and mitogen-activated protein kinases. In conclusion, suppressing the expression of FUT1/4 by RNAi technology reduces the synthesis of LeY and inhibits cancer growth. It may serve as a potential methodology for the treatment of cancers that express LeY glycoconjugates.  相似文献   

2.
Biochemical and genetic evidence indicates that the human genome may encode four or more distinct GDP-fucose:beta-D-N-acetylglucosaminide 3-alpha-L-fucosyltransferase (alpha(1,3)fucosyltransferase) activities. Genes encoding two of these activities have been previously isolated. These correspond to an alpha(1,3/1,4)fucosyltransferase thought to represent the human Lewis blood group locus and an alpha(1,3)fucosyltransferase expressed in the myeloid lineage. We report here the molecular cloning and expression of a third human alpha(1,3)fucosyltransferase gene, homologous to but distinct from the two previously reported human fucosyltransferase genes. When expressed in transfected mammalian cells, this gene determines expression of a fucosyltransferase capable of using N-acetyllactosamine to form the Lewis x epitope, and alpha(2,3)sialyl-N-acetyllactosamine to construct the sialyl Lewis x moiety. This enzyme shares 91% amino acid sequence identity with the human Lewis blood group alpha(1,3/1,4)fucosyltransferase, yet exhibits only trace amounts of alpha(1,4)fucosyltransferase activity. Polymerase chain reaction analyses were used to demonstrate that the gene is syntenic to the Lewis locus on chromosome 19. These analyses also excluded the possibility that this DNA segment represents an allele of the Lewis locus that encodes alpha(1,3)fucosyltransferase but not alpha(1,4)fucosyltransferase activity. These results are consistent with the hypothesis that this gene encodes the human "plasma type" alpha(1,3)fucosyltransferase, and suggest a molecular basis for a family of human alpha(1,3)fucosyltransferase genes.  相似文献   

3.
Stoykova LI  Liu A  Scanlin TF  Glick MC 《Biochimie》2003,85(3-4):363-367
Cystic fibrosis (CF) has a glycophenotype of aberrant sialylation and/or fucosylation. The CF glycophenotype is expressed on membrane glycoconjugates of CF airway epithelial cells as increased fucosyl residues in alpha1,3/4 linkage to N-acetyl glucosamine, decreased fucosyl residues in alpha1,2 linkage to galactose and decreased sialic acid. To define the cause of this phenotype, the enzyme activity of alpha1,3fucosyltransferase (FucT) was examined in extracts of CF airway epithelial cells with a variety of low molecular weight substrates. Using Galbeta1,4GlcNAc as substrate, the activity was divided into 66% alpha1,3FucT and 34% alpha1,2FucT. mRNA expression examined with probes to FucTIII, IV, and VII showed that the highest expression of two CF cell lines was for FucTIV. Only one CF cell line expressed mRNA for FucTIII. The non CF airway epithelial cells had significant enzyme activity for alpha1,3FucT and strong mRNA expression for FucTIV. Thus as reported previously for alpha1,2FucT, the biochemical capacity for alpha1,3FucT was present in both the CF and non CF cells and can not be the cause of the CF glycophenotype. These results support the hypothesis that wild type CFTR acts in the Golgi and when mutated as in CF, faulty compartmentalization of terminal glycosyltransferases results, yielding the CF glycophenotype.  相似文献   

4.
Adhesion of circulating leukocytes to the vascular endothelium during inflammation is mediated in part by their interaction with the endothelial-leukocyte adhesion molecule ELAM-1. ELAM-1, a member of the LEC-CAM family of cell adhesion molecules, expresses an N-terminal carbohydrate recognition domain (CRD) homologous to various calcium-dependent mammalian lectins. However, the contribution of the CRD to cell adhesion and its carbohydrate binding specificity have not been elucidated. This study demonstrates that transfection of a human fucosyltransferase cDNA into nonmyeloid cell lines confers ELAM-1--dependent endothelial adhesion. Binding activity correlates with de novo cell surface expression of the sialylated Lewis x tetrasaccharide, whose biosynthesis is determined by the transfected fucosyltransferase cDNA. We propose that specific alpha(1,3)fucosyltransferases regulate cell adhesion to ELAM-1 by modulating cell surface expression of one or more alpha(2,3)sialylated, alpha(1,3)fucosylated lactosaminoglycans represented by the sialyl Lewis x carbohydrate determinant.  相似文献   

5.
We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.  相似文献   

6.
We have used the human Lewis blood group fucosyltransferase cDNA and cross-hybridization procedures to isolate a human gene that encodes a distinct fucosyltransferase. Its DNA sequence predicts a type II transmembrane protein whose sequence is identical to 133 of 231 amino acids at corresponding positions within the catalytic domain of the Lewis fucosyltransferase. When expressed by transfection in cultured cell lines, this gene determines expression of a fucosyltransferase capable of efficiently utilizing N-acetyllactosamine to form the Lewis x determinant (Gal beta 1----4[Fuc alpha 1----3]GlcNAc). By contrast, biochemical and flow cytometry analyses suggest that the enzyme cannot efficiently utilize the type II acceptor NeuNAc alpha 2----3Gal beta 1----4GlcNAc, to form the sialyl Lewis x determinant. In Chinese hamster ovary cells, however, the enzyme can determine expression of the alpha 2----3-sialylated, alpha 1----3-fucosylated structure known as VIM-2, a putative oligosaccharide ligand for ELAM-1. Cell adhesion assays using VIM-2-positive, sialyl Lewis x-negative transfected Chinese hamster ovary cells indicate that surface expression of the VIM-2 determinant is not sufficient to confer ELAM-1-dependent adhesive properties upon the cells. These results demonstrate that substantial structural similarities can exist between mammalian glycosyltransferases with closely related enzymatic properties, thus facilitating isolation of their cognate genes by cross-hybridization methods. The results further suggest that cell surface expression of the VIM-2 determinant is not necessarily sufficient to mediate ELAM-1-dependent cell adhesion.  相似文献   

7.
8.
The accumulation of alpha1,2fucosylated antigens, such as Y (Fucalpha1,2Galbeta1,4 [Fucalpha1,3]GlcNAcbeta), Le(b) (Fucalpha1,2Galbeta1,3-[Fucalpha1,4]GlcNAcbeta), and H type 2 (Fucalpha1,2 Galbeta1,4GlcNAcbeta) occurs specifically within human colorectal tumor tissues and can be detected by an antifucosylated antigen antibody, such as the YB-2 antibody. In the present investigation, we found that the expression of these antigens bearing an alpha1,2-linked fucose correlated with the resistance of the tumor cells to anticancer treatments. Addition of an exogenous sugar acceptor for alpha1,2fucosyltransferase to the cell medium resulted in suppression of alpha1,2fucosylated antigen expression on the tumor cells and increased susceptibility to anticancer treatment. The increased susceptibility may be attributed to cancer cell-mediated priming by sugar acceptors for alpha1,2fucosyltransferase added to the medium.  相似文献   

9.
10.
11.
Lewis Y (LeY) is a carbohydrate tumor‐asssociated antigen. The majority of cancer cells derived from epithelial tissue express LeY type difucosylated oligosaccharide. Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of LeY oligosaccharide. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation, but the mechanism is still largely unknown. Herein, we investigated the role of the mitogen‐activated protein kinases (MAPKs) and phosphoinositide‐3 kinase (PI3K)/Akt signaling pathways on FUT4‐induced cell proliferation. Results show that overexpression of FUT4 increases the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt. Inhibitors of PI3K (LY294002 and Wortmannin) prevented the phosphorylation of ERK1/2, p38 MAPK, and Akt PI3K). Moreover, phosphorylation of Akt is abolished by inhibitors of ERK1/2 (PD98059) and p38 MAPK (SB203580). These data suggested that FUT4 not only activates MAPK and PI3K/Akt signals, but also promotes the crosstalk among these signaling pathways. In addition, FUT4‐induced stimulation of cell proliferation correlates with increased cell cycle progression by promoting cells into S‐phase. The mechanism involves in increased expression of cyclin D1, cyclin E, CDK 2, CDK 4, and pRb, and decreased level of cyclin‐dependent kinases inhibitors p21 and p27, which are blocked by the inhibitors of upstream signal molecules, MAPK and PI3K/Akt. In conclusion, these studies suggest that FUT4 regulates A431 cell growth through controlling cell cycle progression via MAPK and PI3K/Akt signaling pathways. J. Cell. Physiol. 225: 612–619, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
After transfection of alpha1,3fucosyltransferase (FucT)-VII cDNA into H7721 human hepatocarcinoma cells, the expression of alpha5, but not beta1 integrin was significantly up-regulated. This was evidenced by the increase of alpha5 integrin on cell surface as well as the increase of alpha5 mRNA and protein in the cells. However, the expressions of sialyl Lewis X (SLe(x), the product of alpha1,3FucT-VII) on both alpha5 and beta1 integrin subunits were unchanged. Concomitantly, the tyrosine autophosphorylated FAK and dephosphorylated Src (FAK and Src involve in the signal transduction of integrin alpha5beta1) were up-regulated, while the Tyr-527 phosphorylated Src was down-regulated. The above-mentioned alterations were correlated to the expressions of alpha1,3FucT-VII in different alpha1,3FucT-VII transfected H7721 cell lines. In addition, after alpha1,3FucT-VII transfection, cell adhesion to fibronectin (Fn) and chemotaxic cell migration were obviously promoted. The cell adhesion could be blocked by alpha5 integrin antibody, and cell migration was obviously attenuated by the antibodies to both alpha5 integrin and SLe(x). These findings suggest that the increased surface alpha5 integrin caused by the up-regulation of alpha5 mRNA promotes the cell adhesion to Fn, cell migratiom, and Fn-induced signaling of alpha5beta1 integrin. The up-regulation of surface SLe(x) originated from the over expression of alpha1,3FucT-VII also led to the stimulation of cell migration. This is the first time to report that alpha1,3FucT-VII can regulate the mRNA expression of integrin.  相似文献   

13.
The prostate undergoes branching morphogenesis dependent on paracrine interactions between the prostatic epithelium and the urogenital mesenchyme. To identify cell-surface molecules that function in this process, monoclonal antibodies raised against epithelial cell-surface antigens were screened for antigen expression in the developing prostate and for their ability to alter development of prostates grown in serum-free organ culture. One antibody defined a unique expression pattern in the developing prostate and inhibited growth and ductal branching of cultured prostates by inhibiting epithelial cell proliferation. Expression cloning showed that this antibody binds fucosyltransferase1, an alpha-(1,2)-fucosyltransferase that synthesizes H-type structures on the complex carbohydrate modifications of some proteins and lipids. The lectin UEA I that binds H-type 2 carbohydrates also inhibited development of cultured prostates. These data demonstrate a previously unrecognized role for fucosyltransferase1 and H-type carbohydrates in controlling the spatial distribution of epithelial cell proliferation during prostatic branching morphogenesis. We also show that fucosyltransferase1 is expressed by epithelial cells derived from benign prostatic hyperplasia or prostate cancer; thus, fucosyltransferase1 may also contribute to pathological prostatic growth. These data further suggest that rare individuals who lack fucosyltransferase1 (Bombay phenotype) should be investigated for altered reproductive function and/or altered susceptibility to benign prostatic hyperplasia and prostate cancer.  相似文献   

14.
Historically, the most effective means of modifying cell surface carbohydrates has required the intracellular overexpression of glycosyltransferases or glycosidases and is dependent on the enzymes occupying a cellular localization close to the carbohydrate structures they modify. We report on relocalizing the lysosomal resident glycosidase human alpha-galactosidase to other regions of the cell, Golgi and cell surface, where it is in closer proximity for cleaving the carbohydrate structure Galalpha(1,3)Gal. Relocalization of alpha-galactosidase was achieved by using the transmembrane and cytoplasmic domains from the human protein furin, which is known to localize in the trans-Golgi network (TGN) and cell surface. Two chimeric forms of alpha-galactosidase were generated, one directing it to the TGN of the cell and the other to the cell surface, as shown by confocal microscopy. The relocalized enzymes have the ability to cleave terminal alpha-galactose as detected by expression on the cell surface. Furthermore, when expressed as a transgene in mice, the TGN form of alpha-galactosidase was more effective at decreasing cell surface terminal alpha-galactose than was the native lysosomal form. When expressed in conjunction with the alpha1,2fucosyltransferase that also decreases Galalpha(1,3)Gal, the reduction was additive. The ability to relocalize enzymes that modify cell surface carbohydrate structures has far-reaching implications in biology and may be useful in such fields as xenotransplantation and treatment of glycosidase disorders.  相似文献   

15.
The gastric pathogen Helicobacter pylori can express the histo blood group antigens, which are on the surface of many human cells. Most H. pylori strains express the type II carbohydrates, Lewis X and Y, whereas a small population express the type I carbohydrates, Lewis A and B. The expression of Lewis A and Lewis X, as in the case of H. pylori strain UA948, requires the addition of fucose in alpha1,4 and alpha1,3 linkages to type I or type II carbohydrate backbones, respectively. This work describes the cloning and characterization of a single H. pylori fucosyltransferase (FucT) enzyme, which has the ability to transfer fucose to both of the aforementioned linkages in a manner similar to the human fucosyltransferase V (Fuc-TV). Two homologous copies of the fucT gene have been identified in each of the genomes sequenced. The characteristic adenosine and cytosine tracts in the amino terminus and repeated regions in the carboxyl terminus are present in the DNA encoding the two UA948fucT genes, but these genes also contain differences when compared with previously identified H. pylori fucTs. The UA948fucTa gene encodes an approximately 52-kDa protein containing 475 amino acids, whereas UA948fucTb does not encode a full-length FucT protein. In vitro, UA948FucTa appears to add fucose with a greater than 5-fold preference for type II chains but still retains significant activity using type I acceptors. The addition of the fucose to the type II carbohydrate acceptors, by UA948FucTa, does not appear to be affected by fucosylation at other sites on the carbohydrate acceptor, but the rate of fucose transfer is affected by terminal fucosylation of type I acceptors. Through mutational analysis we demonstrate that only FucTa is active in this H. pylori isolate and that inactivation of this enzyme eliminates expression of all Lewis antigens.  相似文献   

16.
Clarke  JL; Watkins  WM 《Glycobiology》1999,9(2):191-202
Previous investigations on the monkey kidney COS cell line demonstrated the weak expression of fucosylated cell surface antigens and presence of endogenous fucosyltransferase activities in cell extracts. RT-PCR analyses have now revealed expression of five homologs of human fucosyltransferase genes, FUT1, FUT4, FUT5, FUT7, and FUT8, in COS cell mRNA. The enzyme in COS cell extracts acting on unsialylated Type 2 structures is closely similar in its properties to the alpha1,3- fucosyltransferase encoded by human FUT4 gene and does not resemble the product of the FUT5 gene. Although FUT1 is expressed in the COS cell mRNA, it has not been possible to demonstrate alpha1,2- fucosyltransferase activity in cell extracts but the presence of Le(y) and blood-group A antigenic determinants on the cell surface imply the formation of H-precursor structures at some stage. The most strongly expressed fucosyltransferase in the COS cells is the alpha1,6-enzyme transferring fucose to the innermost N -acetylglucosamine unit in N - glycan chains; this enzyme is similar in its properties to the product of the human FUT8 gene. The enzymes resembling the human FUT4 and FUT8 gene products both had pH optima of 7.0 and were resistant to 10 mM NEM. The incorporation of fucose into asialo-fetuin was optimal at 5.5 and was inhibited by 10 mM NEM. This result initially suggested the presence of a third fucosyltransferase expressed in the COS cells but we have now shown that triantennary N- glycans with terminal nonreducing galactose units, similar to those present in asialo-fetuin, are modified by a weak endogenous beta-galactosidase in the COS cell extracts and thereby rendered suitable substrates for the alpha1,6- fucosyltransferase.   相似文献   

17.
半乳糖α 1,3 半乳糖抗原是引起异种器官移植超急性排斥反应 (hyperacuterejection ,HAR)的主要抗原 .α 半乳糖苷酶和α 1,2 岩藻糖转移酶基因可以以不同的方式降低半乳糖α 1,3 半乳糖抗原在内皮细胞表面的表达量 .将人α 半乳糖苷酶基因和α 1,2 岩藻糖转移酶基因单独或连接在一起导入猪血管内皮细胞PEDSV .15中 ,检测细胞表面的抗原及异种天然抗体对细胞杀伤作用 .结果表明α 半乳糖苷酶基因可以将猪血管内皮细胞表面的半乳糖α 1,3 半乳糖抗原清除 74 13%,而α 1,2 岩藻糖转移酶基因也可以清除 4 7 75 %的细胞表面异种抗原 ,但二者都不能达到完全清除的目的 .当α 半乳糖苷酶和α 1,2 岩藻糖转移酶双基因在内皮细胞内共表达时 ,则可以基本清除半乳糖α 1,3 半乳糖抗原 .抗原的减少也可以相应地减弱内皮细胞对异种天然抗体介导的杀伤作用的敏感性 ,尤其是双基因共表达时细胞基本不被杀伤 .结果表明 ,α 半乳糖苷酶基因和α 1,2 岩藻糖转移酶基因可以有效地清除血管内皮细胞表面的半乳糖α 1,3 半乳糖抗原 ,克服HAR的发生 ,为下一步进行动物实验 ,探讨克服异种移植HAR提供了技术途径  相似文献   

18.
Cystic fibrosis (CF) glycoconjugates have a glycosylation phenotype of increased fucosylation and/or decreased sialylation when compared with non-CF. A major increase in fucosyl residues linked alpha 1,3 to antennary GlcNAc was observed when surface membrane glycoproteins of CF airway epithelial cells were compared to those of non-CF airway cells. Importantly, the increase in the fucosyl residues was reversed with transfection of CF cells with wild type CFTR cDNA under conditions which brought about a functional correction of the Cl(-) channel defect in the CF cells. In contrast, examination of fucosyl residues in alpha 1,2 linkage by a specific alpha 1,2 fucosidase showed that cell surface glycoproteins of the non-CF cells had a higher percentage of fucose in alpha 1,2 linkage than the CF cells. Airway epithelial cells in primary culture had a similar reciprocal relationship of alpha 1,2- and alpha 1,3-fucosylation when CF and non-CF surface membrane glycoconjugates were compared. In striking contrast, the enzyme activity and the mRNA of alpha 1,2 fucosyltransferase did not reflect the difference in glycoconjugates observed between the CF and non-CF cells. We hypothesize that mutated CFTR may cause faulty compartmentalization in the Golgi so that the nascent glycoproteins encounter alpha 1,3FucT before either the sialyl- or alpha 1,2 fucosyltransferases. In subsequent compartments, little or no terminal glycosylation can take place since the sialyl- or alpha 1,2 fucosyltransferases are unable to utilize a substrate, which is fucosylated in alpha 1,3 position on antennary GlcNAc. This hypothesis, if proven correct, could account for the CF glycophenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号