首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) on cellulose supports were investigated. The dynamics and extent of related adsorption processes were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Amine groups were installed on the cellulose substrate by adsorption of chitosan from aqueous solution, which allowed for hIgG to physisorb from acid media and produced a functionalized substrate with high surface density (10 mg/m(2)). hIgG adsorption from neutral and alkaline conditions was found to yield lower adsorbed amounts. The installation of the carboxyl groups on cellulose substrate via carboxymethylated cellulose (CMC) adsorption from aqueous solution enhanced the physisorption of hIgG at acidic (adsorbed amount of 5.6 mg/m(2)) and neutral conditions. hIgG adsorption from alkaline conditions reduced the surface density. BSA was used to examine protein attachment on cellulose after modification with chitosan or carboxymethyl cellulose. At the isoelectric point of BSA (pI 5), both of the surface modifications enhanced the adsorption of this protein when compared to that on unmodified cellulose (a 2-fold increase from 1.7 to 3.5 mg/m(2)). At pH 4, the electrostatic interactions favored the adsorption of BSA on the CMC-modified cellulose, revealing the affinity of the system and the possibility of tailoring biomolecule binding by choice of the surface modifier and pH of the medium.  相似文献   

2.
Through their specificity and affinity, antibodies are useful tools in research and medicine. In this study, we investigated a new type of chromatographic method using a thermosensitive polymer for the purification of antibodies against a dextran derivative (DD), as a model. The thermally reversible soluble–insoluble poly(N-isopropylacrylamide)–dextran derivative conjugate, named poly(NIPAAm)–DD, has been synthesized by conjugating amino-terminated poly(N-isopropylacrylamide) to a DD via ethyl-3-(3-dimethylaminopropyl)-carbodiimide. On one hand, this report describes the two steps of poly(NIPAAm)–DD conjugation and characterization. On the other hand, the poly(NIPAAm)–DD conjugate was used as a tool to purify polyclonal antibodies in serum samples from rabbits subcutaneously immunized with the derivatized dextran. Antibodies were purified and quantified by immunoenzymatic assays. Our results indicate that antibodies recognized both DD and poly(NIPAAm)–DD. In contrast, they did not bind to native poly(NIPAAm) or poly(NIPAAm) conjugated with another anionic dextran. We conclude that the conjugation of a polysaccharide to poly(NIPAAm) leads to an original and efficient chromatographic method to purify antibodies. Moreover, this novel method of purification is rapid, sensitive, inexpensive and could be used to purify various types of antibodies.  相似文献   

3.
Glucoamylase (GA) was immobilized onto polyaniline (PANI)-grafted magnetic poly(2-hydroxyethylmethacrylate-co-glycidylmethacrylate) hydrogel (m-p(HEMA-GMA)-PANI) with two different methods (i.e., adsorption and adsorption/cross-linking). The immobilized enzyme preparations were used for the hydrolysis of “starch” dextrin. The amount of enzyme loading on the ferrogel was affected by the medium pH and the initial concentration of enzyme. The maximum loading capacity of the enzyme on the ferrogel was found to be 36.7 mg/g from 2.0 mg/mL enzyme solution at pH 4.0. The adsorbed GA demonstrated higher activity (59%) compared to adsorbed/cross-linked GA (43%). Finally, the immobilized GA preparations exhibited greater stability against heat at 55 °C and pH 4.5 compared to free enzyme (50 °C and pH 5.5), suggesting that the ferrogel was suitable support for immobilization of glucoamylase.  相似文献   

4.
Aluminum [Al(III)] adsorption onto dye-incorporated poly(ethylene glycol dimethacrylate-hydroxyethyl methacrylate) [poly(EGDMA-HEMA)] microspheres was investigated. Poly(EGDMA-HEMA) microspheres, in the size range of 150–200 μm, were produced by a modified suspension polymerization of EGDMA and HEMA. The reactive dyes (i.e., Congo Red, Cibacron Blue F3GA and Alkali Blue 6B) were covalently incorporated to the microspheres. The maximum dye load was 14.5 μmol Congo Red/g, 16.5 μmol Cibacron Blue F3GA/g and 23.7 μmol Alkali Blue 6B/g polymer. The maximum Al(III) adsorption on the dye microspheres from aqueous solutions containing different amounts of Al(III) ions were 27.9 mg/g, 17.3 mg/g and 12.2 mg/g polymer for the Congo Red, Cibacron Blue F3GA and Alkali Blue 6B, respectively. The maximum Al(III) adsorption was observed at pH 7.0 in all cases. Non-specific Al(III) adsorption was about 0.84 mg/g polymer under the same conditions. High desorption ratios (95%) were achieved in all cases by using 0.1 M HNO3. It was possible to reuse these dye-incorporated poly(EGDMA-HEMA) microspheres without significant losses in the Al(III) adsorption capacities.  相似文献   

5.
The adsorption of papain on Reactive Blue 4 dye–ligand affinity membrane was investigated in a batch system. The combined effects of operating parameters such as initial pH, temperature, and initial papain concentration on the adsorption were analyzed using response surface methodology. The optimum adsorption conditions were determined as initial pH 7.05, temperature 39 °C, and initial papain concentration 11.0 mg/ml. At optimum conditions, the adsorption capacity of dye–ligand affinity membrane for papain was found to be 27.85 mg/g after 120 min adsorption. The papain was purified 34.6-fold in a single step determined by fast protein liquid chromatography. More than 85% of the adsorbed papain was desorbed using 1.0 M NaCl at pH 9.0 as the elution agent. The purification process showed that the dye–ligand immobilized composite membrane gave good separation of papain from aqueous solution.  相似文献   

6.
Yi JZ  Ma YQ  Zhang LM 《Bioresource technology》2008,99(13):5362-5367
A series of novel sodium humate/poly(N-isopropylacrylamide) (SH/PNIPA) hydrogels were synthesized by solution polymerization. The swelling and decoloring properties of SH/PNIPA hydrogels were also examined. Experiment results show that there exist hydrogen-bonding interactions between SH and PNIPA in the SH/PNIPA hydrogels network, which are not strong enough to disrupt the aggregation of dehydrated PNIPA chains at phase transition temperature, leading to the same volume phase transition temperature as pure PNIPA hydrogel. The adsorption and desorption of methylene blue (MB) for the hydrogels were influenced by temperature, initial MB concentration and SH amount. Low temperature favors the adsorption and desorption of MB. Appropriate SH amount of the hydrogels is crucial for the adsorption and desorption of MB. The maximum adsorption capacity was 10.8 mg MB per gram of SH/PNIPA gel.  相似文献   

7.
A novel magnetic support was prepared by an oxidization-precipitation method with poly(vinyl alcohol) (PVA) as the entrapment material. Transmission electron microscopy indicated that the magnetic particles had a core-shell structure, containing many nanometer-sized magnetic cores stabilized by the cross-linked PVA. The particles showed a high magnetic responsiveness in magnetic field, and no aggregation of the particles was observed after the particles had been treated in the magnetic field. These facts indicated that the particles were superparamagnetic. Cibacron blue 3GA (CB) was coupled to the particles to prepare a magnetic affinity support (MAS) for protein adsorption. Lysozyme was used as a model protein to test the adsorption properties of the MAS. The adsorption equilibrium of lysozyme to the MAS was described by the Langmuir-type isotherm. The capacity for lysozyme adsorption was more than 70 mg/g MAS (wet weight) at a relatively low CB coupling density (3-5 micromol/g). In addition, 1.0 M NaCl solution could be used to dissociate the adsorbed lysozyme. Finally, the MAS was recycled for the purification of alcohol dehydrogenase (ADH) from clarified yeast homogenates. Under proper conditions, the magnetic separation yielded over 5-fold purification of the enzyme with 60% recovery of the enzyme activity.  相似文献   

8.
In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe3+) cryogel discs were prepared. The PHEMAGA/Fe3+ cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe3+ cryogel discs had large pores ranging from 10 to 100?µm with a swelling degree of 9.36?g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe3+ cryogel discs were investigated. Maximum catalase adsorption capacity (62.6?mg/g) was obtained at pH 7.0, 25°C, and 3?mg/ml initial catalase concentration. The PHEMAGA/Fe3+ cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe3+ cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.  相似文献   

9.
Poly(N-isopropylacrylamide) (PNIPAAM) exhibits a lower critical solubility temperature (LCST) of 32°C. Using thin films of this compound as a model system, the potential of ‘smart polymers’ as biofouling-release agents was examined. PNIPAAM-coated glass slides were incubated in artificial sea water containing the marine bacterium Halomonas marina or in natural bay water at a temperature above the LCST. Upon rinsing of the biofouled samples with artificial sea water below the LCST, the dissolution of the coating released over 90% of the attached fouling material, a significant increase over the release obtained for glass controls. These experiments demonstrate the potential of PNIPAAM and similar polymers as possible fouling-release agents, and suggest that tethered PNIPAAM (or similar polymers) may be useful as regenerable fouling-release surfaces. Received 26 September 1997/ Accepted in revised form 29 November 1997  相似文献   

10.
The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.  相似文献   

11.
Cibacron Blue F3GA-immobilized poly(EGDMA–HEMA) microbeads were investigated as a specific sorbent for bilirubin removal from human plasma. The poly(EGDMA–HEMA) microbeads were prepared by a modified suspension copolymerization technique. Cibacron Blue F3GA was covalently coupled to the poly(EGDMA–HEMA) microbeads via the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA molecule, under alkaline conditions. Bilirubin adsorption was investigated from hyperbilirubinemic human plasma on the poly(EGDMA–HEMA) microbeads containing different amounts of immobilized Cibacron Blue F3GA, (between 5.0–16.5 μmol/g). The non-specific bilirubin adsorption on the unmodified poly(EGDMA–HEMA) microbeads were 0.32 mg/g from human plasma. Higher bilirubin adsorption values, up to 14.8 mg/g, were obtained with the Cibacron Blue F3GA-immobilized microbeads. Bilirubin molecules interacted with these sorbents directly. Contribution of albumin adsorption on the bilirubin adsorption was pronounced. Bilirubin adsorption increased with increasing temperature.  相似文献   

12.
The optimum conditions for biological hydrogen production from food waste by Clostridium beijerinckii KCTC 1875 were investigated. The optimum initial pH and fermentation temperature were 7.0 and 40°C, respectively. When the pH of fermentation was controlled to 5.5, a maximum amount of hydrogen could be obtained. Under these conditions, about 2,737 mL of hydrogen was produced from 50 g COD/L of food waste for 24 h, and the hydrogen content in the biogas was 38%. Hydrogen production rate and yield were about 108 mL/L·h and 128 mL/g CODdegraded, respectively. High concentrations of acetic (< 5,000 mg/L) or butyric acid (< 3,000 mg/L) significantly inhibited hydrogen production.  相似文献   

13.
The cyanobacterium Arthrospira (Spirulina) platensis was used to study the process of silver biosorption. Effects of various parameters such as contact time, dosage of biosorbent, initial pH, temperature, and initial concentration of Ag(I) were investigated for a batch adsorption system. The optimal biosorption conditions were determined as pH 5.0, biosorbent dosage of 0.4 g, and initial silver concentration of 30 mg/L. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich models – however, the Freundlich model provided a better fit to the experimental data. The kinetic data fit the pseudo-second-order model well, with a correlation coefficient of 0.99. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the adsorption process of silver ion by spirulina biomass was exothermic and spontaneous (ΔG° < 0), and exothermic (ΔH° < 0) process. The biosorption capacity of biomass A. platensis serves as a basis for the development of green technology for environmental remediation.  相似文献   

14.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

15.
A novel magnetic poly(ethylene glycol dimethacrylate-N-methacryloly-L-histidinemethylester) [m-poly(EGDMA-(MAH)] support was prepared for purification of immunoglobulin G (IgG) in a magnetically stabilized fluidized bed by suspension polymerization. Elemental analysis of the magnetic beads for nitrogen was estimated as 70 micromol MAH/g polymer. Magnetic poly(EGDMA-MAH) beads were used in the separation of immunoglobulin-G (IgG) from aqueous solutions and/or human plasma in a magnetically stabilized fluidized bed system. IgG adsorption capacity of the beads decreased with an increase in the flow rate. The maximum IgG adsorption was observed at pH 6.0 for MES buffer. IgG adsorption onto the m-poly(EGDMA) was negligible. Higher adsorption values (up to 262 mg/g) were obtained in which the m-poly(EGDMA-MAH) sorbents were used from aqueous solutions. Higher amounts of IgG were adsorbed from human plasma (up to 320 mg/g) with a purity of 87%. IgG molecules could be repeatedly adsorbed and desorbed with these sorbents without noticeable loss in their IgG adsorption capacity.  相似文献   

16.
The nitrile hydratase (NHase, EC 3.5.5.1) activity of Rhodococcus rhodochrous PA-34 was explored for the conversion of 3-cyanopyridine to nicotinamide. The NHase activity (∼18 U/mg dry cell weight, dcw) was observed in 0.1 M phosphate buffer, pH 8.0 containing 1M 3-cyanopyridine as substrate, and 0.75 mg of resting cells (dry cell weight) per ml reaction mixture at 40°C. However, 25°C was more suitable for prolonged batch reaction at high substrate (3-cyanopyridine) concentration. In a batch reaction (1 liter), 7M 3-cyanopyridine (729 g) was completely converted to nicotinamide (855 g) in 12h at 25°C using 9.0 g resting cells (dry cell weight) of R. rhodochrous PA-34.  相似文献   

17.
The adsorption of β-Lactoglobulin (β-Lg), one of the main constituents of fouling deposits in milk processing, onto the surface of stainless steel particles was studied under various conditions. The adsorption isotherm of β-Lg at 25°C was of the Langmuir type, and the plateau suggested that the surface was covered by a monolayer of β-Lg. The amount of β-Lg adsorbed steeply increased above 65°C. At 75°C, it increased almost linearly with the protein concentration in the bulk solution. Heating and chemical modification of the SH-group caused a much smaller amount of β-Lg to be adsorbed at 75°C. These findings indicate that the thermal aggregation of denatured β-Lg at the surface is important in the adsorption. More β-Lg was adsorbed at pH 4 than at pH 6.85. This suggests that the electrostatic interaction between β-Lg and the surface contributes to the adsorption behavior.  相似文献   

18.
The adsorption of Pb(II) onto Hydrilla verticillata was examined in aqueous solution with parameters of pH, adsorbent dosage, contact time and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms, and both models fitted well. The monolayer adsorption capacity of Pb(II) was found as 104.2 mg/g at pH 4 and 25°C. Dubinin–Radushkevich (D–R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (15.81 kJ/mol) indicated that the adsorption of Pb(II) onto H. verticillata may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto H. verticillata was a feasible, spontaneous and exothermic process in nature. The influence of Cd2+, Cu2+ and Ni2+ on adsorption of Pb2+ onto H. verticillata was studied, too. In the investigated range of operating conditions, it was found that the existence of Cd 2+, Cu 2+ and Ni 2+ had no impact on the adsorption of Pb2+.  相似文献   

19.
Magnetite nanoparticles coated with an anionic biopolymer poly(γ-glutamic acid) (PGA-MNPs) were synthesized and characterized for their methylene blue dye adsorption capability. Both bare- and dye-loaded PGA-MNPs were characterized by FTIR, TEM and VSM measurements, revealing the PGA-MNPs to be superparamagnetic with average particle diameter being 12.4 nm and magnetization value 59.2 emu/g. The synthesized PGA-MNPs were stable in deionized, tap and river waters as well as in acidic and basic media. Redlich-Peterson and Langmuir models precisely described the isotherm and the maximum adsorption capacity was 78.67 mg/g. A pseudo-second-order equation best predicted the kinetics with a maximum adsorption attained within 5 min. Incorporation of sodium or calcium ions reduced the dye adsorption, while a raise in pH enhanced adsorption and a complete desorption occurred at pH 1.0. Dye removal mechanism by PGA-MNPs was probably due to electrostatic interaction through exchange of protons from side-chain α-carboxyl groups on PGA-MNPs surface.  相似文献   

20.
Poly(N-vinylimidazole), PVIm, gels were prepared by γ-irradiation polymerization of N-vinylimidazole in aqueous solutions. These affinity gels with a water swelling ratio of 1800% for plain polymeric gel and between 30 and 80% for Cu(II) and Co(II)-chelated gels at pH 6.0 in phosphate buffer were used in glucose oxidase (GOx) adsorption–desorption studies. Different amounts of Cu(II) and Co(II) ions (maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)) were loaded onto the gels by changing the initial concentration of Cu(II) and Co(II) ions, and pH. GOx adsorption on these gels from aqueous solutions containing different amount of GOx at different pH was investigated in batch reactors. Immobilized glucose oxidase activity onto the poly(N-vinylimidazole), and Cu(II) and Co(II)-chelated poly(N-vinylimidazole) were investigated with changing pH and the initial glucose oxidase concentration. Maximum activity of immobilized glucose oxidase onto the PVIm, Cu(II) and Co(II)-chelated PVIm gels was investigated and pH dependence was observed to be at pH 6.5 for free enzyme, pH 7.0 for PVIm, pH 7.5 for Cu(II) and Co(II)-chelated PVIm gels, respectively. The stability of the immobilized enzyme is very high for all gels and the residual activity was higher than 93% in the first 10 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号