首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The use of capillary electrophoresis with fluorescently labeled nucleic acids revolutionized DNA sequencing, effectively fueling the genomic revolution. We present an application of this technology for the high-throughput structural analysis of nucleic acids by chemical and enzymatic mapping ('footprinting'). We achieve the throughput and data quality necessary for genomic-scale structural analysis by combining fluorophore labeling of nucleic acids with novel quantitation algorithms. We implemented these algorithms in the CAFA (capillary automated footprinting analysis) open-source software that is downloadable gratis from https://simtk.org/home/cafa. The accuracy, throughput and reproducibility of CAFA analysis are demonstrated using hydroxyl radical footprinting of RNA. The versatility of CAFA is illustrated by dimethyl sulfate mapping of RNA secondary structure and DNase I mapping of a protein binding to a specific sequence of DNA. Our experimental and computational approach facilitates the acquisition of high-throughput chemical probing data for solution structural analysis of nucleic acids.  相似文献   

2.
Identification of nucleotides used for RNA chain initiation or for contacting DNA binding proteins is basic to our understanding of gene regulation. Normally, a radioactive primer is used to copy RNA or DNA. The polymerase extension stops at free ends of mRNA (as in promoter mapping) or at the position of template cleavage or modification (as in footprinting). The locations of these positions are then analyzed by polyacrylamide gel electrophoresis. These analyses have been improved using fluorescently labeled primers and commonly available DNA sequencing machines. The protocol, which we call fluorescently labeled oligonucleotide extension (FLOE), eliminates the need for handling radioactivity and polyacrylamide. The DNA sequencer delivers data as a "trace" that is ready for quantification, which eliminates the need to trace gels separately. The data analysis is further improved by new software, Scanalyze, which we present here. We demonstrate that by using promoter mapping and footprinting, FLOE shortens experimental time, extends the stretch of analyzable sequence, and simplifies quantification compared to radioactive methods and is as sensitive in terms of detecting templates.  相似文献   

3.
4.
Single molecule detection of target molecules specifically bound by paired fluorescently labeled probes has shown great potential for sensitive quantitation of biomolecules. To date, no reports have rigorously evaluated the analytical capabilities of a single molecule detection platform employing this dual-probe approach or the performance of its data analysis methodology. In this paper, we describe a rapid, automated, and sensitive multicolor single molecule detection apparatus and a novel extension of coincident event counting based on detection of fluorescent probes. The approach estimates the number of dual-labeled molecules of interest from the total number of coincident fluorescent events observed by correcting for unbound probes that randomly pass through the interrogation zone simultaneously. Event counting was evaluated on three combinations of distinct fluorescence channels and was demonstrated to outperform conventional spatial cross-correlation in generating a wider linear dynamic response to target molecules. Furthermore, this approach succeeded in detecting subpicomolar concentrations of a model RNA target to which fluorescently labeled oligonucleotide probes were hybridized in a complex background of RNA. These results illustrate that the fluorescent event counting approach described represents a general tool for rapid sensitive quantitative analysis of any sample analyte, including nucleic acids and proteins, for which pairs of specific probes can be developed.  相似文献   

5.
Given the demand for improved methods for detecting and characterizing RNA variants in situ, we developed a quantitative method for detecting RNA alternative splicing variants that combines in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes with confocal microscopy Förster resonance energy transfer (FRET). The use of PNA probes complementary to sequences flanking a given splice junction allows to specifically quantify, within the cell, the RNA isoform generating such splice junction as FRET efficiency measure. The FRET-based PNA fluorescence in situ hybridization (FP-FISH) method offers a conceptually new approach for characterizing at the subcellular level not only splice variant isoform structure, location, and dynamics but also potentially a wide variety of close range RNA–RNA interactions. In this paper, we explain the FP-FISH technique workflow for reliable and reproducible results.  相似文献   

6.

Background

State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests.

Methodology and Principal Findings

The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique.

Conclusions and Significance

The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests.  相似文献   

7.
We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.  相似文献   

8.
We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.  相似文献   

9.
Sm-like proteins are ubiquitous ring-shaped oligomers that exhibit a variety of nucleic acid-binding activities. They have been linked functionally to various cellular events involving RNA, and it is generally believed that their activity is exerted via the passive binding of nucleic acids. Our earlier studies of the Sm-like Escherichia coli protein Hfq provided the first evidence indicating that Hfq is an ATP-binding protein. Using a combination of biochemical and genetic techniques, we have now determined a plausible ATP-binding site in Hfq and tested Hfq's ATP-binding affinity and stoichiometry. The results of RNA footprinting and binding analyses suggest that ATP binding by the Hfq-RNA complex results in its significant destabilization. RNA footprinting indicates deprotection of Hfq-bound RNA tracts in the presence of ATP, suggestive of their release by the protein. The results reported herein broaden the scope of potential in vivo roles for Hfq and other Sm-like proteins.  相似文献   

10.
11.
Jain SS  Tullius TD 《Nature protocols》2008,3(6):1092-1100
Hydroxyl radical footprinting has been widely used for studying the structure of DNA and DNA-protein complexes. The high reactivity and lack of base specificity of the hydroxyl radical makes it an excellent probe for high-resolution footprinting of DNA-protein complexes; this technique can provide structural detail that is not achievable using DNase I footprinting. Hydroxyl radical footprinting experiments can be carried out using readily available and inexpensive reagents and lab equipment. This method involves using the hydroxyl radical to cleave a nucleic acid molecule that is bound to a protein, followed by separating the cleavage products on a denaturing electrophoresis gel to identify the protein-binding sites on the nucleic acid molecule. We describe a protocol for hydroxyl radical footprinting of DNA-protein complexes, along with a troubleshooting guide, that allows researchers to obtain efficient cleavage of DNA in the presence and absence of proteins. This protocol can be completed in 2 d.  相似文献   

12.
Translin is a nucleic acid binding protein that has been implicated in regulating the targeting and translation of dendritic RNA. In previous studies, we found that Translin and its partner protein, Trax, are components of a gel-shift complex that is highly enriched in brain extracts. In those studies, we employed a DNA oligonucleotide, GS1, as a probe to label the complex. Translin has also been identified as a component of a gel-shift complex detected using an RNA oligonucleotide probe, derived from the 3' UTR of protamine-2 mRNA. Although we had assumed that these probes labeled the same complex, recent studies indicate that association of Trax with Translin suppresses its RNA binding activity. As these findings challenge this assumption and suggest that the native RNA binding complex does not contain Trax, we have re-examined this issue. We have found that the gel-shift complexes labeled with either GS1 or protamine-2 probes are "supershifted" by addition of Trax antibodies, indicating that both are heteromeric Translin/Trax complexes. In addition, cross-competition studies provide additional evidence that these probes label the same complex. Furthermore, analysis of recombinant Translin/Trax complexes generated by co-transfection of Trax with Translin in hEK293T demonstrates that they are labeled with either probe. Although recombinant Translin forms a homomeric nucleic acid binding complex in vitro, our findings indicate that both Trax and Translin are components of the native gel-shift complex labeled with either GS1 or protamine-2 probes.  相似文献   

13.
Hydroxyl radical footprinting can probe the solvent accessibility of the ribose moiety of the individual nucleotides of DNA and RNA. Semi-automated analytical tools are presented for the quantitative analyses of nucleic acid footprint transitions in which processes such as folding or ligand binding are followed as a function of time or ligand concentration. Efficient quantitation of the intensities of the electrophoretic bands comprising the footprinting reaction products is achieved by fitting a series of Lorentzian curves to line profiles obtained from gels utilizing sequentially relaxed constraints consistent with electrophoretic mobility. An automated process of data ‘standardization’ has been developed that corrects for differences in the loading amounts in the electrophoresis. This process enhances the accuracy of the derived transitions and makes generating them easier. Together with visualization of the processed footprinting in false-color two-dimensional maps, DNA and RNA footprinting data can be accurately, precisely and efficiently processed allowing transitions to be objectively and comprehensively analyzed. The utility of this new analysis approach is illustrated by its application to the ion-meditated folding of a large RNA molecule.  相似文献   

14.
The antisense therapeutic strategy makes the assumption that sequence-specific hybridization of an oligonucleotide to its target can take place in living cells. The present work provides a new method for the detection of intracellular RNA molecules using in situ hybridization on living cells. The first step consisted in designing nonperturbant conditions for cell permeabilization using streptolysin O. In a second step, intracellular hybridization specificity was evaluated by incorporating various types of fluorescently labeled nucleic acid probes (plasmids, oligonucleotides). Due to its high expression level, the 28S ribosomal RNA was retained as a model. Results showed that: (1) no significant cell death was observed after permeabilization; (2) on living cells, 28S RNA specific probes provided bright nucleoli and low cytoplasmic signal; (3) control probes did not lead to significant fluorescent staining; and (4) comparison of signals obtained on living and fixed cells showed a colocalization of observed fluorescence. These results indicate the feasibility of specific hybridization of labeled nucleic acid probes under living conditions, after a simple and efficient permeabilization step. This new detection method is of interest for investigating the dynamics of distribution of various gene products in living cells, under normal or pathological conditions.Abbreviations PI propidium iodide - SLO streptolysin O  相似文献   

15.
凝胶阻滞实验(electrophoretic mobility shift assay,EMSA)是研究蛋白质与核酸结合的一种关键实验技术。EMSA技术兴起以来,使用放射性同位素、生物素标记核酸探针的手段已经非常成熟,但这两种传统的标记技术分别具有放射性探针稳定性差和生物素检测步骤复杂等缺点。近年来,尽管荧光标记探针逐渐被应用于EMSA中,但是对于利用荧光标记探针的EMSA仍缺乏系统的报道。对荧光标记的EMSA技术流程进行了优化和系统总结;利用6-羧基荧光素(6-carboxy-fluoroscine,FAM)标记ZmGRAS11启动子探针,通过EMSA检测其与Opaque2蛋白的结合,明确了蛋白和探针的适宜比例为8∶1。对GCN4 motif序列碱基进行突变并利用EMSA分析Opaque2与ZmGRAS11启动子之间的结合位点,结果表明GCN4 motif的“TGAC”核心基序在ZmGRAS11启动子与Opaque2蛋白的结合中可能起到了关键作用。研究结果为进一步探究Opaque2-ZmGRAS11转录调控模块在玉米籽粒发育中的作用机理提供了数据支撑。  相似文献   

16.
Footprinting with an automated capillary DNA sequencer   总被引:5,自引:0,他引:5  
Yindeeyoungyeon W  Schell MA 《BioTechniques》2000,29(5):1034-6, 1038, 1040-1
Footprinting is a valuable tool for studying DNA-protein contacts. However, it usually involves expensive, tedious and hazardous steps such as radioactive labeling and analyses on polyacrylamide sequencing gels. We have developed an easy four-step footprinting method involving (i) the generation and purification of a PCR fragment that is fluorescently labeled at one end with 6-carboxyfluorescein; (ii) brief exposure of the fragment to a DNA-binding protein and then DNase I; (iii) spin-column purification; and (iv) analysis of partial digestion products on the ABI Prism 310 capillary DNA sequencer/genetic analyzer. Very detailed and sensitive footprints of large (> 400 bp) DNA fragments can be easily obtained, as illustrated by our use of this method to characterize binding of PhcA, a LysR-type activator, to two sites greater than 100 bp apart in the 5' untranslated region of xpsR, one of its regulated target genes. The advantages of this new method are that it (i) uses long-lived, safe and easy-to-make fluorescently labeled target fragments; (ii) uses sensitive, robust and highly reproducible fragment analysis using an automated DNA sequencer, instead of gel electrophoresis and autoradiography; and (iii) is cost effective.  相似文献   

17.
Fluorescent dyes provide specific, sensitive, and multiplexed detection of nucleic acids. To maximize sensitivity, fluorescently labeled reaction products (e.g., cycle sequencing or primer extension products) must be purified away from residual dye-labeled precursors. Successful high-throughput analyses require that this purification be reliable, rapid, and amenable to automation. Common methods for purifying reaction products involve several steps and require processes that are not easily automated. Prolinx®, Inc. has developed RapXtract superparamagnetic separation technology, affording rapid and easy-to-perform methods that yield high-quality product and are easily automated. The technology uses superparamagnetic particles that specifically remove unincorporated dye-labeled precursors. These particles are efficiently pelleted in the presence of a magnetic field, making them ideal for purification because of the rapid separations that they allow. RapXtract-purified sequencing reactions yield data with good signal and high Phred quality scores, and they work with various sequencing dye chemistries, including BigDye and near-infrared fluorescence IRDyes. RapXtract technology can also be used to purify dye primer sequencing reactions, primer extension reactions for genotyping analysis, and nucleic acid labeling reactions for microarray hybridization. The ease of use and versatility of RapXtract technology makes it a good choice for manual or automated purification of fluorescently labeled nucleic acids.  相似文献   

18.
HIV-1 RNA was quantitated directly by capillary electrophoresis with laser-induced fluorescence (CE-LIF). CE-LIF was used to analyze cellular RNA and various nucleotide complexes. A fluorescently labeled DNA probe (DNA/RNA complex) in conjunction with thiazole orange intercalator was determined to have optimal stability and sensitivity for RNA analysis. Based on this observation, a hybridization method using a HIV-specific fluorescently labeled probe with analysis by CE-LIF was developed. Plasma samples from a HIV-seropositive patient were lysed to obtain RNA, hybridized with the HIV-specific probe and analyzed by CE-LIF. As little as 19 fg (1710 copies per 1 ml of starting plasma) of HIV RNA can be reliably and quantitatively detected. CE-LIF appears to be an efficient and sensitive method to quantitatively analyze RNA from a variety of sources.  相似文献   

19.
The variety of potentially useful dyes or haptenes available for fluorescent nucleic acid hybridization assays is far greater than what can be obtained from commercial sources. Since this diversity could be useful in many laboratory applications, we have developed a simple and inexpensive procedure for preparing nonpurified labeled nucleotides, for use in common nucleic acid labeling reactions, such as PCR and nick translation. The modified nucleotides were synthesized by coupling allylamine-dUTP to the succinimidyl-ester derivatives of the fluorescent dyes or haptenes such as biotin or digoxigenin, which require fluorescently labeled proteins for detection. This method allows custom preparation of most common fluorescent nucleotides and rapid testing of new ones, while reducing the cost of procedures such as multiplex fluorescent in situ hybridization (M-FISH) by 100-200 fold.  相似文献   

20.
In this article, we present the design principles and application of a motif composed of a stem-loop probe (SP) hybridized to a fluorescently labeled universal reporter (UR) for sensing unlabeled nucleic acids. At room temperature, SP-UR is in the hairpin-closed form in which the fluorophore of UR is in proximity to the G bases of the hairpin, where consequently the fluorescent emission is quenched significantly. On hybridization with target, SP-UR is trapped in the hairpin-opened configuration in which the fluorophore and the G quenchers are apart. This turns off quenching, increases emission intensity, and signals the presence of target. Compared with the common approach that employs an oligonucleotide probe with a covalently linked fluorophore, the use of a fluorescently labeled universal reporter strand hybridized to an unlabeled stem-loop probe provides a more efficient approach to the fabrication of nucleic acid sensors and microarrays potentially useful for real-time analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号