首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F. R. Minchin  D. A. Baker 《Planta》1969,89(3):212-223
Summary The flux of water, , to the xylem of exuding root systems of Ricinus communis was controlled using a range of mannitol concentrations permitting the influence of this water flux on the potassium flux, f K, to be studied. The relationship between and f K thus obtained was investigated, for a number of external concentrations of potassium, Cm, supplied as potassium nitrate. An analysis of these data indicated the presence of a water dependent and a water independent f K both of which varied with Cm. The water dependent f K shows a parabolic relationship with Cm for Cm values <1 mM followed by a sharp inflection and decline at higher Cm values whereas the water independent f K shows an hyperbolic relationship over the same range of Cm values.Uptake of potassium by exuding root systems was measured and shown to be dependent on the solute potential of the medium. The uptake was also shown to exhibit a dual absorption isotherm the kinetics of which indicate a low Km system (system 1) and a high Km system (system 2). The Km value obtained for system 1 is very similar to that obtained for the water independent f K. It is postulated that the water independent f K is contributed by that portion of f K arriving in the stele via the cortical symplast and is directly dependent on Cm. The water dependent f K is contributed by those ions moved across the root in response to centripetal water movement through the cortical cell walls.  相似文献   

2.
Uptake of potassium ions by isolated stelar tissues of barley from 0.5 and 10 mM K+ was respectively 13 and 3.6% of that of the cortical tissues. 0.1 mM H2PO4, LO mM ATP and 10 mM Ca(NO3)2 did not increase the potassium uptake of either stele or cortex during 5 h of uptake period. A time-course incubation for histological demonstration of the ATPase activity of the plasmalemma and tonoplast of the matured sections of the roots demonstrated a greater activity for the cortical than the stelar tissue. In the stelar parenchyma cells, the plasma lemma showed a higher activity than the tonoplast. These results, which support the “leakiness hypothesis” of the stele, are discussed in relation to the proposed mechanisms of radial ion transport in roots.  相似文献   

3.
F. R. Minchin  D. A. Baker 《Planta》1973,113(2):97-104
Summary The effect of calcium on the flux of potassium to the exudate of detached root systems of Ricinus communis has been investigated. Previous analyses have indicated the presence of a water dependent and a water independent flux of potassium which vary with the concentration of potassium in the bathing medium, in the presence of 0.1 mM CaCl2. In the present study it has been observed that at a higher concentration of calcium in the bathing medium (2.5 mM CaCl2) the water dependent flux of potassium is greatly reduced while the water independent flux is not affected. It is proposed that the differential effect of calcium on these two fluxes is a reflection of the degree of dependence of these fluxes on the permeability of the plasmamembranes within the root.  相似文献   

4.
D. A. Baker 《Planta》1973,112(4):293-299
Summary The accumulation of 86Rb labelled potassium by isolated stelar and cortical tissues from 7-day-old roots of Zea mays has been compared with the levels accumulated by these tissues in the intact root. Cortical tissues have similar uptake eapacities in these two conditions whereas stelar tissues only exhibit an uptake capacity in the intact root system. The uncoupler carbonylcyanide m-chlorophenylhydrazone caused a considerable decrease in the uptake of potassium by these tissues. In the intact root system it prevented ions from the bathing medium reaching the stelar tissues. The efflux pattern from preloaded isolated stelar and cortical tissues was considerably altered by the inhibitor, a promotion of the efflux occurring in both of these tissues.It is concluded that stelar tissues only accumulated ions when these are supplied through the root symplasm and that the stelar plasmalemma has only a limited uptake capacity per se. Stelar uptake is thus a reflection of vacuolar accumulation across the tonoplast. There is no evidence in the present study of a carrier-mediated active secretion of ions across the stelar plasmalemma. The fact that the efflux was promoted rather than depressed by the uncoupler supports the postulate that a passive leakage is the final stage in the transport of ions across the plant root.  相似文献   

5.
Asparagine, a major transport compound, is metabolized in Pisum sativum by two enzymes, asparaginase (EC 3.5.1.1) and asparagine-pyruvate aminotransferase. The relative amount of the two enzymes varies between tissues. In developing seeds, there are very high levels of asparaginase but only trace amounts of the aminotransferase. Asparaginase is high in young leaves but falls rapidly during leaf growth; the aminotransferase remains high throughout development. Inhibitor studies with aminooxyacetate and methionine sulfoximine confirm that the aminotransferase is the main enzyme involved in asparagine utilisation in the leaf. Root tissue has low levels of asparaginase and only trace amounts of the aminotransferase. The asparaginase is potassium dependent, but is also partially activated by ammonium ions. The leaf aminotransferase has a lower K m for asparagine (4.5 mM) than the leaf asparaginase (8 mM). The seed asparaginase has a lower K m for asparagine (3 mM) than the leaf asparaginase.  相似文献   

6.
Summary The effect of varying calcium concentration in the medium on the potassium flux into the exudate has been studied. In media of low ionic strength (o.1 mM KCl) the potassium flux, J K, was significantly increased by increasing the calcium concentration of the medium. But in higher ionic strength media (10 mM) KCl) there was no increase in J K as the calcium concentration of the medium was increased. The effect of external sodium concentration on J K was also studied. These results are discussed in relation to present theories of salt and water movement into the plant root. It is concluded that two pathways potentially exist for movement of salts to the exudate stream: firstly, via a symplasm and secondly, through the cell wall pathway. But is is further concluded that the cell wall pathway, at normal physiological ionic strengths, is not available for salt transport due to co-ion exclusion by the fixed negative charges.  相似文献   

7.
Summary To investigate directly whether a sodium-potassium-chloride cotransport system is operating in the mammalian thick ascending limb of Henle's loop (TALH) and in the elasmobranch rectal gland, plasma membrane vesicles were prepared from TALH cells isolated from rabbit kidney outer medulla and from rectal glands ofSqualus acanthias, and chloride uptake was measured by a rapid filtration technique. Chloride uptake into TALH vesicles in the presence of a 25 mM Na2SO4, 25 mM K2SO4 gradient reached 70% of equilibrium at 2.5 min. In the presence of both sodium and potassium, the 15 s chloride uptake was inhibited 35% by 1 mM bumetanide. When either sodium or potassium was removed from the incubation medium, chloride uptake decreased to the level observed in the presence of 1 mM bumetanide. 0.5 mM SITS had no effect on chloride uptake by the plasma membrane vesicles. This sodium and potassium dependent, bumetanide sensitive chloride uptake was also observed under tracer exchange conditions. Chloride uptake into rectal gland plasma membrane vesicles in the presence of a 50 mM Na2SO4, 50 mM K2SO4 gradient reached 80% of equilibrium at 2.5 min. 1 mM bumetanide inhibited the 15 s uptake of chloride by 34% and removal of either sodium or potassium from the incubation medium reduced chloride uptake to the level observed in the presence of bumetanide under both gradient and tracer exchange conditions. These studies provide additional support for the hypothesis that a sodium-potassium-chloride cotransport system is operating in these epithelia.Abbreviations SITS 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid - TALH thick ascending limb of Henle's loop  相似文献   

8.
Elevation of the external potassium concentration induced a two-phase inward current in freshly isolated pyramidal hippocampal neurons. This current was voltage-dependent and demonstrated strong inward rectification. The current consisted of a leakage current and a time-dependent current (τ=40–50 msec at 21°C); the latter was designated asI ΔK. As was shown earlier, K+ is a major charge carrier in the development of slow potassium-activated current. The pharmacological properties ofI ΔK were studied using a patch-clamp technique.I ΔK was completely blocked by external 10 mM TEA or 5 mM Ba2+ (IC50=480±90mM) and exhibited low sensitivity to extracellular Cs+ (2 mM). This current was not affected by 1 mM 4-aminopyridine and was insensitive to a muscarinic agonist, carbachol (50 μM), and to 1 mM extracellular Cd2+. Elevation of external Ca2+ from 2.5 mM to 10 mM did not changeI ΔK. Our data indicate that the pharmacological properties ofI ΔK differ from those of other voltage-gated potassium currents, but more specific blockers must be used to make this evidence conclusive.  相似文献   

9.
The transmembrane potential of cells from a continuous cell line (BHK-21) has been investigated by a combination of electrophysiological and flame photometric techniques. The ratio of sodium permeability to potassium permeability (PNa/PK) determined from membrane potentials recorded at varying external potassium concentrations was 0.082; from membrane potential measurements and the intracellular sodium and potassium concentrations of cells in 6.8 mM K+ media the value was 0.075. The PNa/PK ratio was not temperature dependent. Dinitrophenol (1 mM) did not significantly alter the membrane potential of cells incubated for one hour with the inhibitor. However, iodoacetate (1 mM) and sodium fluoride (30 mM) caused a significant depolarization during a one-hour incubation. Measurements of sodium and potassium concentrations during incubation at 4°C showed a decrease in internal potassium and an increase in internal sodium accompanied by a decreased membrane potential. Ion concentrations and membrane potentials were measured in cells recovering at 37°C following 24 hours at 4°C. Membrane potentials in excess of EK during the first ten minutes of recovery may indicate electrogenic pumping.  相似文献   

10.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

11.
Summary Glycogen synthase I in a homogenate of human polymorphonuclear leukocytes was phosphorylated under imitated physiological conditions utilizing the endogenous protein kinases. At subsequent steps of phosphorylation the32P-labelled synthase was purified and characterized. Limited tryptic hydrolysis of the32P-labelled synthase released four phosphopeptides (t-A, t-B, t-C, t-D) and subsequent chymotrypsinization of the trypsin resistant core released three phosphopeptides (c-A, c-B, c-C). One Pi/subunit was incorporated within 8–10 min and 2.2 Pi/subunit within 60 min increasing the Kc for Gle-6-P to 4–6 mM. The initial phosphorylation up to 0.8 Pi/subunit occurred mainly in peptide c-A and a linear relation between ratio of independence (RI) of glycogen synthase in the interval RI 0.85 to RI 0.05 and phosphorylation of this peptide to 0.5 Pi was observed. Phosphorylation of this peptide is responsible for the decrease in ratio of independence. From experiments with inhibitors and activators, the initial phosphorylation was found predominantly catalysed by the endogenous cAMP independent synthase kinase, however, the endogenous cAMP dependent protein kinase and phosphorylase kinase also phosphorylate endogenous glycogen synthase I to a minor degree. Circumstantial evidence for a Ca-dependent synthase kinase different from phosphorylase kinase is presented. The endogenous Gle-6-P dependent glycogen synthase occurring in a homogenate of leukocytes disrupted in the presence of NaF incorporated 1.07 Pi/subunit and Kc for Glc-6-P was increased from 6–8 mM to 20 mM. From the present and previous experiments [7] a total of 8 major phosphorylatable sites have been defined, one on each of the peptides t-A, t-B, t-C, c-B and c-C and two on peptide c-A, which in addition may contain a third site for phosphorylase kinase. Assuming identical subunits, only 13 out of 32 sites are thus covalently modified at maximum phosphorylation. The operational defined synthase R (Kc for Glc-6-P 0.5 mM) and D (Kc for Glc-6-P 2–8 mM) activities correspond to synthase with about 0.8 Pi and 1.8–2.3 Pi/subunit, respectively.  相似文献   

12.
Summary The mechanisms underlying the pacemaker current in cardiac tissues is not agreed upon. The pacemaker potential in Purkinje fibers has been attributed to the decay of the potassium current I Kdd. An alternative proposal is that the hyperpolarization-activated current I f underlies the pacemaker potential in all cardiac pacemakers. The aim of this review is to retrace the experimental development related to the pacemaker mechanism in Purkinje fibers with reference to findings about the pacemaker mechanism in the SAN as warranted. Experimental data and their interpretation are critically reviewed. Major findings were attributed to K+ depletion in narrow extracellular spaces which would result in a time dependent decay of the inward rectifier current I K1. In turn, this decay would be responsible for a “fake” reversal of the pacemaker current. In order to avoid such a postulated depletion, Ba2+ was used to block the decay of I K1. In the presence of Ba2+ the time-dependent current no longer reversed and instead increased with time and more so at potentials as negative as −120 mV. In this regard, the distinct possibility needs to be considered that Ba2+ had blocked I Kdd (and not only I K1). That indeed this was the case was demonstrated by studying single Purkinje cells in the absence and in the presence of Ba2+. In the absence of Ba2+, I Kdd was present in the pacemaker potential range and reversed at E K. In the presence of Ba2+, I Kdd was blocked and I f appeared at potentials negative to the pacemaker range. The pacemaker potential behaves in a manner consistent with the underlying I Kdd but not with I f. The fact that I f is activated on hyperpolarization at potential negative to the pacemaker range makes it suitable as a safety factor to prevent the inhibitory action of more negative potentials on pacemaker discharge. It is concluded that the large body of evidence reviewed proves the pacemaker role of I Kdd (but not of I f) in Purkinje fibers.  相似文献   

13.
In this study, a suspension culture of recombinant Chinese hamster ovary (CHO) cells producing follicle-stimulating hormone (FSH) was used to investigate the effects of potassium ion (K+) on cell growth and FSH production. Cell growth was significantly suppressed at a K+ concentration higher than 60 mM, but specific FSH productivity (q FSH) was enhanced more than 2-fold compared to the value obtained at 4 mM K+. In an attempt to alleviate the cell growth suppression at a high K+ concentration, the cells were adapted at 60 mM K+ in a repeated batch mode. During adaptation, the growth rate increased from 0.010 to 0.020 h−1, andq FSH also gradually increased and reached 11.1 ng/(106 cells h), which was even higher than that of the unadapted cells at 60 mM K+. The adapted cells showed a 2.6-fold increase in maximum FSH titer at 80 mM K+ compared to the unadapted cells at 4 mM K+. Taken together, these results demonstrate the potential of using culture media containing cells adapted to high K+ concentrations, for the enhancement of recombinant protein production.  相似文献   

14.
The Transport of Potassium to the Xylem Exudate of Ryegrass: II. EXUDATION   总被引:2,自引:0,他引:2  
The membrane potentials of ryegrass root cells (Ev0) were foundto be linearly related to the logarithm of the external KClconcentration ([KCl]o), over the range 0.1 to 20.0 mM. Exudationwas studied over the same concentration range. The concentrationof potassium in the exudate did not vary significantly with[KCl]0 but the rates of movement of water and potassium to theexudate (fH2O and fK respectively) and the electrical potentialand electrochemical potential for potassium in the exudate (Exoand x0,K respectively) all tended to decreaseas [KCl]0 increased. There was a very highly significant correlationbetween fK and fH2O. By rapidly increasing [KCl]E0 and following the depolarization,two components of Ex0 were observed. The first of these wasinstantaneous and was attributed to Ev0 of the epidermal cells.The second component, a gradual repolarisation which commencedabout 9 min later, was attributed to Ev0 of the stelar cells.With an additional contribution from electro-osmosis, thesetwo components quantitatively account for Ex0. The implications of these data for the mechanism of radial iontransport in roots are discussed and it is concluded that thestelar cells are not exclusively specialized for transportingpotassium into the xylem vessels.  相似文献   

15.
Cells from a human glioblastoma (TC 526) maintained in tissue culture for ten years had a mean membrane potential of 27 ± 0.9 mV at an external potassium concentration [K0] of 5.3 mM. When [K0] was varied between 2.5 and 5.3 mM, membrane potential changes were close to those predicted by the Nernst equation. At higher [K0], the Nernstian slope was approached only in the presence of 10?5 M ouabain, which did not affect membrane potential at a [K0] of 5.3 mM. An electrogenic sodium pump activated by high [K0] could explain these findings; such a mechanism has been demonstrated in other tissues.  相似文献   

16.
Cytosolic free magnesium (Mgf) is considered relatively constant. To test this concept, Mgf was estimated during hyperkalemic ventricular akinesis, normal and maximum adrenergic stimulation, and sulfate loading of the normoxic perfused guinea-pig heart. The Mgf estimates utilized a new sliding scale derived from the Mg2+-dependence of glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK). The pseudo constant KGAPDH′·KPGK′ was measured as ([creatine phosphate][3-phosphoglycerate][lactate]KLDH/([creatine][Pi[glyceraldehyde 3-phosphate][pyruvate]KCK), which varied with magnesium due to KCK (CK, LDH = creatine kinase, lactate dehydrogenase). However, the correct magnesium dependencies of the true constants KGAPDH·KPGK and KCK were taken from the literature. The [Mg2+] at which pseudo KGAPDH′·KPGK′ equalled true KGAPDH·KPGK was the best estimate of Mgf. Mgf fell to ≈0.13 mM in hyperkalemic arrest from a control of ≈0.6 mM, rising to ≈0.85 mM only during maximum adrenergic stress. Mgf increased further to ≈1.3 mM during sulfate loading which induced ATP catabolism. Mgf and ATP were reciprocally related. Thus; (1) myocardial free [Mg2+] judged from GAPDH/PGK mass-action relations changed appreciably only under extreme physiological states; (2) ATP was a major chelator of Mg2+ in perfused myocardium, i.e., acute ATP pool size reduction may be associated with increments in Mgf.  相似文献   

17.
Formaldehyde dehydrogenase and formate dehydrogenase were purified 45- and 16-fold, respectively, from Hansenula polymorpha grown on methanol. Formaldehyde dehydrogenase was strictly dependent on NAD and glutathione for activity. The K mvalues of the enzyme were found to be 0.18 mM for glutathione, 0.21 mM for formaldehyde and 0.15 mM for NAD. The enzyme catalyzed the glutathine-dependent oxidation of formaldehyde to S-formylglutathione. The reaction was shown to be reversible: at pH 8.0 a K mof 1 mM for S-formylglutathione was estimated for the reduction of the thiol ester with NADH. The enzyme did not catalyze the reduction of formate with NADH. The NAD-dependent formate dehydrogenase of H. polymorpha showed a low affinity for formate (K mof 40 mM) but a relatively high affinity for S-formylglutathione (K mof 1.1 mM). The K mvalues of formate dehydrogenase in cell-free extracts of methanol-grown Candida boidinii and Pichia pinus for S-formylglutathione were also an order of magnitude lower than those for formate. It is concluded that S-formylglutathione rather than free formate is an intermediate in the oxidation of methanol by yeasts.  相似文献   

18.
The patch-clamp technique in a whole-cell configuration was used to study the influence of the external concentration of potassium ions on the characteristics of the voltage-dependent potassium current in the plasma membrane of GH3 cells (a cell line isolated from the rat pituitary body tumor). The [K+] out shift from 5 to 100 mM induced a monotonic increase in potassium current with a constant difference between the testing potential and potassium equilibrium potential. The dependence of an activation time constant, n , and a steady-state activation,n, of the potassium current on [K+] out is of a distinct non-monotononic character with the extremum at 20 mM. Our experiments and theoretical speculations allow us to suppose that the interaction of potassium ions with slowly relaxing charged channel-forming protein groups induced the observed effects.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 110–115, March–April, 1995.  相似文献   

19.
The effects of 4-aminopyridine, verapamil, and 4-bromophenacylbromide (4-BPB) on the kinetics of delayed outward-rectifying potassium currents (I K) were investigated in cultured mouse peritoneal macrophages using a classical whole-cell patch-clamp technique. The outwardI K was completely blocked by 4-aminopyridine at 1.0 mM concentration. Verapamil at the same concentration also blockedI K completely. Lower concentration (50 µM) of verapamil demonstrated only partial blocking action, which was almost fully reversible, and markedly increased the rate ofI K inactivation. The main effect of 4-BPB on the outwardI K was a significant acceleration ofI K activation and inactivation kinetics. It is suggested that this modulation results from a direct effect of 4-BPB on potassium channels or relates to the arachidonic acid cascade.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 49–53, January–February, 1994.  相似文献   

20.
Uptake of nitrate and urea by Phaeodactylum tricornutum is shown to be a sodium dependent process inhibited by lithium or potassium. The half-saturation constant for sodium (KNa) was 2.6 mM for nitrate uptake and 71 mM for urea uptake. It is suggested that sodium dependent uptake mechanisms may be characteristic of marine plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号