共查询到2条相似文献,搜索用时 0 毫秒
1.
Goal, Scope and Background The energy systems included in the ecoinvent database v1.1 describe the situation around year 2000 of Swiss and Western European power plants and boilers with the associated energy chains. The addressed nuclear systems concern Light Water Reactors (LWR) with mix of open and closed fuel cycles. The system model ‘Natural Gas’ describes production, distribution, and combustion of natural gas. Methods Comprehensive life cycle inventories of the energy systems were established and cumulative results calculated within the ecoinvent framework. Swiss conditions for the nuclear cycle were extrapolated to major nuclear countries. Long-term radon emissions from uranium mill tailings have been estimated with a simplified model. Average natural gas power plants were analysed for different countries considering specific import/export of the gas, with seven production regions separately assessed. Uncertainties have been estimated quantitatively. Results and Discussion Different radioactive emission species and wastes are produced from different steps of the nuclear cycle. Emissions of greenhouse gases from the nuclear cycle are mostly from the upstream chain, and the total is small and decreasing with increasing share of centrifuge enrichment. The results for natural gas show the importance of transport and low pressure distribution network for the methane emissions, whereas energy is mostly invested for production and long-distance pipeline transportation. Because of significant differences in power plant efficiencies and gas supply, country specific averages differ greatly. Conclusion The inventory describes average worldwide supply of nuclear fuel and average nuclear reactors in Western Europe. Although the model for nuclear waste management was extrapolated from Swiss conditions, the ranges obtained for cumulative results can represent the average in Europe. Emissions per kWh electricity are distributed very differently over the natural gas chain for different species. Modern combined cycle plants show better performance for several burdens like cumulative greenhouse gas emissions compared to average plants. Recommendation and Perspective Comparison of country-specific LWRs or LWR types on the basis of these results is not recommended. Specific issues on different strategies for the nuclear fuel cycle or location-specific characteristics would require extension of analysis. Results of the gas chain should not be directly applied to areas other than those modelled because emission factors and energy requirements may differ significantly. A future update of inventory data should reconsider production and transport from Russia, as it is a major producer and exporter to Europe. The calculated ranges of uncertainty factors in ecoinvent provide useful information but they are more indications of uncertainties rather than strict 95% intervals, and should therefore be applied carefully. 相似文献
2.
Life Cycle–based Assessment of Energy Use and Greenhouse Gas Emissions in Almond Production,Part II: Uncertainty Analysis through Sensitivity Analysis and Scenario Testing 下载免费PDF全文
This is the second part of a two‐article series examining California almond production. The part I article describes development of the analytical framework and life cycle–based model and presents typical energy use and greenhouse gas (GHG) emissions for California almonds. This part II article builds on this by exploring uncertainty in the life cycle model through sensitivity and scenario analysis, and by examining temporary carbon storage in the orchard. Sensitivity analysis shows life cycle GHG emissions are most affected by biomass fate and utilization, followed by nitrous oxide emissions rates from orchard soils. Model sensitivity for net energy consumption is highest for irrigation system parameters, followed by biomass fate and utilization. Scenario analysis shows utilization of orchard biomass for electricity production has the greatest potential effect, assuming displacement methods are used for co‐product allocation. Results of the scenario analysis show that 1 kilogram (kg) of almond kernel and associated co‐products are estimated to cause between ?3.12 to 2.67 kg carbon dioxide equivalent (CO2‐eq) emissions and consume between 27.6 to 52.5 megajoules (MJ) of energy. Co‐product displacement credits lead to avoided emissions of between ?1.33 to 2.45 kg CO2‐eq and between ?0.08 to 13.7 MJ of avoided energy use, leading to net results of ?1.39 to 3.99 kg CO2‐eq and 15.3 to 52.6 MJ per kg kernel (net results are calculated by subtracting co‐product credits from the results for almonds and co‐products). Temporary carbon storage in orchard biomass and soils is accounted for by using alternative global warming characterization factors and leads to a 14% to 18% reduction in CO2‐eq emissions. Future studies of orchards and other perennial cropping systems should likely consider temporary carbon storage. 相似文献