首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mechanism of water stress-induced xylem embolism   总被引:40,自引:4,他引:36       下载免费PDF全文
We investigated the hypothesis that water stress-induced xylem embolism is caused by air aspirated into functional vessels from neighboring embolized ones (e.g. embolized by physical damage) via pores in intervessel pit membranes. The following experiments with sugar maple (Acer saccharum Marsh.) support the hypothesis. (a) Most vessels in dehydrating stem segments embolized at xylem pressures < −3 megapascals; at this point the pressure difference across intervessel pits between air-filled vessels at the segment's ends and internal water-filled vessels was >3 megapascals. This same pressure difference was found to be sufficient to force air across intervessel pits from air injection experiments of hydrated stem segments. This suggests air entry at pits is causing embolism in dehydrating stems. (b) Treatments that increased the permeability of intervessel pits to air injection also caused xylem to embolize at less negative xylem pressures. Permeability was increased either by perfusing stems with solutions of surface tension below that of water or by perfusion with a solution of oxalic acid and calcium. The mechanism of oxalic-calcium action on permeability is unknown, but may relate to the ability of oxalate to chelate calcium from the pectate fraction of the pit membrane. (c) Diameter of pores in pit membranes measured with the scanning electron microscope were within the range predicted by hypothesis (≤0.4 micrometer).  相似文献   

3.
A new method is presented that enables the induction of embolisms in a fraction of all xylem vessels, based on diameter, at one cut end of a stem segment. The method is based on the different capillary characteristic of xylem vessels of different cross-sectional size. To verify the method, air embolisms were induced in cut xylem vessels of chrysanthemum (Dendranthemaxgrandiflorum Tzvelev cv. Cassa) stem segments at different xylem tensions and compared with the distribution of gas-filled vessels as visualized by cryo-scanning electron microscopy (Cryo-SEM). At -6 kPa xylem pressure, air-entrance was only induced in large diameter vessels (>30 microm), while at -24 kPa embolisms were induced in almost all xylem vessels (>10 microm). Although the principle of the embolization method worked well, smaller diameter vessels were observed to be embolized than was expected according to the calculations. The role of cross-sectional shape and contact angle between xylem sap and vessel wall at the menisci are discussed. After correction for the observed (diameter independent) deviation from circularity of the cross-sectional vessel shape the contact angle was calculated to be approximately 55 degrees. Hydraulic resistance (Rh) measurements before and after embolization showed that the effect of embolizing only large diameter cut xylem vessels had only a small influence on overall Rh of a stem segment. Embolizing all cut xylem vessels at one cut end almost trebled overall Rh. The difference was discussed in the light of the networking capacity of the xylem system.  相似文献   

4.
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.

A complete digital reconstruction of a grapevine xylem network reveals that network connectivity imparts greater resistance to drought-induced embolism spread than pit membrane properties suggest.  相似文献   

5.
Adequate radial water transport between elastic bark tissue and xylem is crucial in trees, because it smoothens abrupt changes in xylem water potential, greatly reducing the likelihood of suffering dangerous levels of embolism. The radial hydraulic conductance involved is generally thought to be constant. Evidence collected about variable root and leaf hydraulic conductance led us to speculate that radial hydraulic conductance in stem/branches might also be variable and possibly modulated by putative aquaporins. We therefore correlated diameter changes in walnut (Juglans regia L.) with changes in water potential, altered by perfusion of twig samples with D-mannitol solutions having different osmotic potentials. Temperature and cycloheximide (CHX; a protein synthesis inhibitor) treatments were performed. The temperature response and diameter change inhibition found in CHX-treated twigs underpinned our hypothesis that radial hydraulic conductance is variable and likely mediated by a putative aquaporin abundance and/or activity. Our data demonstrate that radial water transport in stem/branches can take two routes in parallel: an apoplastic and a cell-to-cell route. The contribution of either route depends on the hydraulic demand and is closely linked to a boost of putative aquaporins, causing radial conductance to be variable. This variability should be considered when interpreting and modelling diameter changes.  相似文献   

6.
Magnetic resonance imaging (MRI) was used to noninvasively monitor the status of individual xylem vessels in the stem of an intact, transpiring grape (Vitis vinifera) plant over a period of approximately 40 h. Proton density-weighted MRI was used to visualize the distribution of mobile water in the stem and individual xylem vessels were scored as either water or gas filled (i.e. embolized). The number of water-filled vessels decreased during the first 24 h of the experiment, indicating that approximately 10 vessels had cavitated during this time. Leaf water potentials decreased from -1.25 to -2.1 MPa during the same period. Watering increased leaf water potentials to -0.25 MPa and prevented any further cavitation. Refilling of xylem vessels occurred as soon as the lights were switched off, with the majority of vessels becoming refilled with water during the first 2 to 3 h in darkness. These measurements demonstrate that MRI can be used to monitor the functional status of individual xylem vessels, providing the first method to study the process of cavitation and embolism repair in intact plants.  相似文献   

7.

Premise of the Study

Dimensions and spatial distribution of vessels are critically important features of woody stems, allowing for adaptation to different environments through their effects on hydraulic efficiency and vulnerability to embolism. Although our understanding of vessel development is poor, basipetal transport of auxin through the cambial zone may play an important role.

Methods

Stems of Populus tremula ×alba were treated with the auxin transport inhibitor N‐1‐naphthylphthalamic acid (NPA) in a longitudinal strip along the length of the lower stem. Vessel lumen diameter, circularity, and length; xylem growth; tension wood area; and hydraulic conductivity before and after a high pressure flush were determined on both NPA‐treated and control plants.

Key Results

NPA‐treated stems formed aberrant vessels that were short, small in diameter, highly clustered, and angular in cross section, whereas xylem formed on the untreated side of the stem contained typical vessels that were similar to those of controls. NPA‐treated stems had reduced specific conductivity relative to controls, but this difference was eliminated by the high‐pressure flush. The control treatment (lanolin + dimethyl sulfoxide) reduced xylem growth and increased tension wood formation, but never produced the aberrant vessel patterning seen in NPA‐treated stems.

Conclusions

These results are consistent with a model of vessel development in which basipetal polar auxin transport through the xylem‐side cambial derivatives is required for proper expansion and patterning of vessels and demonstrate that reduced auxin transport can produce stems with altered stem hydraulic properties.  相似文献   

8.
The current controversy about the "cohesion-tension" of water ascent in plants arises from the recent cryo-scanning electron microscopy (cryo-SEM) observations of xylem vessels content by Canny and coworkers (1995). On the basis of these observations it has been claimed that vessels were emptying and refilling during active transpiration in direct contradiction to the previous theory. In this study we compared the cryo-SEM data with the standard hydraulic approach on walnut (Juglans regia) petioles. The results of the two techniques were in clear conflict and could not both be right. Cryo-SEM observations of walnut petioles frozen intact on the tree in a bath of liquid nitrogen (LN(2)) suggested that vessel cavitation was occurring and reversing itself on a diurnal basis. Up to 30% of the vessels were embolized at midday. In contrast, the percentage of loss of hydraulic conductance (PLC) of excised petiole segments remained close to 0% throughout the day. To find out which technique was erroneous we first analyzed the possibility that PLC values were rapidly returned to zero when the xylem pressures were released. We used the centrifugal force to measure the xylem conductance of petiole segments exposed to very negative pressures and established the relevance of this technique. We then analyzed the possibility that vessels were becoming partially air-filled when exposed to LN(2). Cryo-SEM observations of petiole segments frozen shortly after their xylem pressure was returned to atmospheric values agreed entirely with the PLC values. We confirmed, with water-filled capillary tubes exposed to a large centrifugal force, that it was not possible to freeze intact their content with LN(2). We concluded that partially air-filled conduits were artifacts of the cryo-SEM technique in our study. We believe that the cryo-SEM observations published recently should probably be reconsidered in the light of our results before they may be used as arguments against the cohesion-tension theory.  相似文献   

9.
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.  相似文献   

10.
The mechanism of water-stress-induced embolism of xylem was investigated in Malosma laurina and Heteromeles arbutifolia, two chaparral shrub species of southern California. We tested the hypothesis that the primary cause of xylem dysfunction in these species during dehydration was the pulling of air through the pores in the cell walls of vessels (pores in pit membranes) as a result of high tensions on xylem water. First, we constructed vulnerability-to-embolism curves for (i) excised branches that were increasingly dehydrated in the laboratory and (ii) hydrated branches exposed to increasing levels of external air pressure. Branches of M. laurina that were dehydrated became 50% embolized at a xylem pressure potential of -1.6 MPa, which is equal in magnitude but opposite in sign to the +1.6 MPa of external air pressure that caused 50% embolism in hydrated stems. Dehydrated and pressurized branches of H. arbutifolia reached a 50% level of embolism at -6.0 and +6.4 MPa, respectively. Secondly, polystyrene spheres ranging in diameter from 20 to 149 nm were perfused through hydrated stem segments to estimate the pore size in the vessel cell walls (pit membranes) of the two species. A 50% or greater reduction in hydraulic conductivity occurred in M. laurina at perfusions of 30, 42, 64 and 82 nm spheres and in H. arbutifolia at perfusions of 20 and 30 nm spheres. Application of the capillary equation to these pore diameters predicted 50% embolism at xylem tensions of -2.2 MPa for M. laurina and -6.7 MPa for H. arbutifolia, which are within 0.7 MPa of the actual values. Our results suggest that the size of pores in pit membranes may be a factor in determining both xylem efficiency and vulnerability to embolism in some chaparral species. H. arbutifolia, with smaller pores and narrower vessels, withstands lower water potentials but has lower transport efficiency. M. laurina, with wider pores and wider vessels, has a greater transport efficiency but requires a deeper root system to help avoid catastro-phically low water potentials.  相似文献   

11.
Tyloses and the Maintenance of Transpiration   总被引:2,自引:1,他引:1  
CANNY  M. J. 《Annals of botany》1997,80(4):565-570
During a study of transpiration and embolism-formation in petiolesof sunflower, tyloses were frequently observed in early metaxylemvessels. Tyloses were confined to the inner ends of the xylemarcs, remote from the phloem. Vessels in this position are especiallyvulnerable to embolism. All stages of the invasion of vessellumens by xylem parenchyma cells were observed, from the earlyprotuberance of a cell through a pit to the complete occlusionof the lumen by one to several cells. The lumen space not occupiedby tyloses was seen both filled with xylem sap, or embolizedand gas-filled. Thus, during the early stages of tylosis formationthe vessel remained active in carrying the transpiration stream.Thin-walled vessels of the protoxylem or early metaxylem werenot tylosed, but were squashed and disappeared. These observationsare interpreted as evidence that vessels vulnerable to embolismare decommissioned and replaced by parenchyma tissue, whilenew and less vulnerable vessels are added to the xylem arcsat the cambial side. It is proposed that tylosis formation istriggered by the frequent embolization of the vulnerable vesselsto give, ultimately, an incompressible tissue. Then tyloseswould be necessary to preserve the tissue pressure which expresseswater to refill embolisms in the remaining vessels, and maintaintranspiration, as explained by the compensating pressure theoryof water transport. Compensating pressure theory; embolisms; starch sheath; tissue pressure; transpiration; tyloses; vessel diameter  相似文献   

12.
The relation between xylem vessel age and vulnerability to cavitation of sugar maple (Acer saccharum Marsh.) was quantified by measuring the pressure required to force air across bordered pit membranes separating individual xylem vessels. We found that the bordered pit membranes of vessels located in current year xylem could withstand greater applied gas pressures (3.8 MPa) compared with bordered pit membranes in vessels located in older annular rings (2.0 MPa). A longitudinal transect along 6-year-old branches indicated that the pressure required to push gas across bordered pit membranes of current year xylem did not vary with distance from the growing tip. To understand the contribution of age-related changes in vulnerability to the overall resistance to cavitation, we combined data on the pressure thresholds of individual xylem vessels with measurements of the relative flow rate through each annual ring. The annual ring of the current year contributed only 16% of the total flow measured on 10-cm-long segments cut from 6-year-old branches, but it contributed more than 70% of the total flow when measured through 6-year-old branches to the point of leaf attachment. The vulnerability curve calculated using relative flow rates measured on branch segments were similar to vulnerability curves measured on 6-year-old branches (pressure that reduces hydraulic conductance by 50% = 1.6-2.4 MPa), whereas the vulnerability curve calculated using relative flow rates measured on 6-year-old branches were similar to ones measured on the extension growth of the current year (pressure that reduces hydraulic conductance by 50% = 3.8 MPa). These data suggest that, in sugar maple, the xylem of the current year can withstand larger xylem tensions than older wood and dominates water delivery to leaves.  相似文献   

13.
We present a practical for university-level students aimed at measuring and comparing xylem hydraulic properties of co-existing plant species. After sampling branches of several woody species in the field, their main hydraulic properties were measured using a simple set-up. Hydraulic conductivity (Kh ) was calculated as the ratio between water flow through a plant segment and the pressure gradient driving the flow. The percent reduction in conductivity due to xylem embolism (i.e. air-filled conduits) was estimated by comparing Kh before and after flushing the measure segments to remove all native embolism. Raw hydraulic conductivity was standardised by cross-sectional wood area or supported leaf area to obtain more meaningful measures of conducting capacity. The results showed differences among study species, particularly between conifers and angiosperms. These differences are briefly discussed in terms of wood anatomy and the general biology of the species. Overall the practical provides a good opportunity for students to appreciate the main aspects of xylem water transport and the constraints it imposes on plant water relations.  相似文献   

14.
The three-dimensional (3-D) arrangement of vessels and the vessel-to-vessel connections in the secondary xylem of the stem of the ring-porous hardwood tree Fraxinus lanuginosa were studied in series of thick transverse sections with epifluorescence microscope and confocal laser scanning microscope. Vessels were traced in sequential sections, and vessel networks were reconstructed in two segments of wood with dimensions of 2 × 1.4 × 21.2 mm(3) and 2 × 1.4 × 5.8 mm(3) (tangential × radial × axial). The arrangement of vessels and intervessel pits were visualized by scanning electron microscopy in low-density polyethylene microcasts and on exposed tangential faces of growth-ring boundaries. The vessels deviated from the stem axis in the tangential direction and, to a lesser extent, in the radial direction. Some neighboring vessels were twisted around each other. Vessels that appeared solitary in single sections were found to be sequentially contiguous with a number of other vessels, forming networks that extended in the tangential direction and across growth-ring boundaries. In the 21.2-mm wood block, all earlywood vessels at the growth-ring boundary made contact with latewood vessels in the previous tree ring. Within a growth ring however, only a single contact was observed between individual earlywood and latewood vessels. Densely arranged intervessel pits were characteristic in the regions where adjacent vessels made contact with each other. Such bordered pits were abundant in the tangential walls of vessel elements adjacent to growth-ring boundaries. Therefore, bordered pits appear to provide the pathway for the radial transport of water via the vessel network across growth-ring borders. Fiber-tracheids, observed as terminal cells in the tree rings, might also contribute to the apoplastic transfer of water across ring borders.  相似文献   

15.
Xylella fastidiosa, a xylem-limited bacterial pathogen that causes bacterial leaf scorch in its hosts, has a diverse and extensive host range among plant species worldwide. Previous work has shown that water stress enhances leaf scorch symptom severity and progression along the stem in Parthenocissus quinquefolia infected by X. fastidiosa. The objective here was to investigate the mechanisms underlying the interaction of water stress and infection by X. fastidiosa. Using the eastern deciduous forest vine, P. quinquefolia, infection and water availability were manipulated while measuring leaf water potentials (psi(L)), stomatal conductance (g(s)), whole shoot hydraulic conductance (K(h)), per cent xylem embolism, and xylem vessel dimensions. No significant differences in any of the physiological measurements were found between control and infected plants prior to drought. Drought treatment significantly reduced psi(L) and g(s) at all leaf positions throughout the day in late summer in both years of the study. In addition, infection significantly reduced psi(L) and g(s) in the most basal leaf positions in late summer in both years. Whole shoot hydraulic conductance was reduced by both low water and infection treatments. However, per cent embolized vessels and mean vessel diameter were affected by drought treatment only. These results imply that the major effect of infection by X. fastidiosa occurs due to reduced hydraulic conductance caused by clogging of the vessels, and not increased cavitation and embolism of xylem elements. The reduced K(h) caused by X. fastidiosa infection acts additively with the water limitation imposed by Drought stress.  相似文献   

16.
Water stress induced cavitation and embolism in some woody plants   总被引:30,自引:0,他引:30  
A comparison was made of the relative vulnerability of xylem conduits to cavitation and embolism in three species [ Thuja occidentalis L., Tsuga canadensis (L.) Carr. and Acer saccharum Marsh.]. Waterlogged samples of wood were air dehydrated while measuring relative water loss, loss of hydraulic conductance, cumulative acoustic emissions (= cavitations) and xylem water potential. Most cavitation events and loss of hydraulic conductance occurred while water potential declined from – 1 to –6 MPa. There were differences in vulnerability between species. Other people have hypothesized that large xylem conduits (e.g. vessels) should be more vulnerable to cavitations than small conduits (e.g. tracheids). Our findings are contrary to this hypothesis. Under water stress, the vessel bearing wood retained water better than tracheid bearing wood. However, within a species large conduits were more prone to cavitation than small conduits.  相似文献   

17.
Vulnerability of xylem conduits to cavitation and embolism was compared in two species of Rhizophoraceae, the mangrove Rhizophora mangle L. and the tropical moist-forest Cassipourea elliptica (Sw.) Poir. Cavitation (water column breakage preceeding embolism) was monitored by ultrasonic detection; embolism was quantified by its reduction of xylem hydraulic conductivity. Acoustic data were not predictive of loss in hydraulic conductivity, probably because signals from cavitating vessels were swamped by more numerous ones from cavitating fibers. Rhizophora mangle was the less vulnerable to embolism of the two species, losing 80% of its hydraulic conductivity between – 6.0 and – 7.0 MPa. Cassipourea elliptica lost conductivity in linear proportion to decreasing xylem pressure from – 0.5 to – 7.0 MPa. Species vulnerability correlated closely with physiological demands of habitat; the mangrove Rhizophora mangle had field xylem pressures between – 2.5 and – 4.0 MPa. whereas the minimum for Cassipourea elliptica was – 1.6 MPa. Differences in vulnerability between species could be accounted for by differences in the measured air permeability of intervessel pit membranes. According to this explanation, embolism occurs when air enters a water-filled vessel from a neighboring air-filled one via pores in shared pit membranes.  相似文献   

18.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

19.
The xylem is one of the two long distance transport tissues in plants, providing a low resistance pathway for water movement from roots to leaves. Its properties determine how much water can be transported and transpired and, at the same time, the plant's vulnerability to transport dysfunctions (the formation and propagation of emboli) associated to important stress factors, such as droughts and frost. Both maximum transport efficiency and safety against embolism have classically been attributed to the properties of individual conduits or of the pit membrane connecting them. But this approach overlooks the fact that the conduits of the xylem constitute a network. The topology of this network is likely to affect its overall transport properties, as well as the propagation of embolism through the xylem, since, according to the air-seeding hypothesis, drought-induced embolism propagates as a contact process (i.e., between neighbouring conduits). Here we present a model of the xylem that takes into account its system-level properties, including the connectivity of the xylem network. With the tools of graph theory and assuming steady state and Darcy's flow we calculated the hydraulic conductivity of idealized wood segments at different water potentials. A Monte Carlo approach was adopted, varying the anatomical and topological properties of the segments within biologically reasonable ranges, based on data available from the literature. Our results showed that maximum hydraulic conductivity and vulnerability to embolism increase with the connectivity of the xylem network. This can be explained by the fact that connectivity determines the fraction of all the potential paths or conduits actually available for water transport and spread of embolism. It is concluded that the xylem can no longer be interpreted as the mere sum of its conduits, because the spatial arrangement of those conduits in the xylem network influences the main functional properties of this tissue. This brings new arguments into the long-standing discussion on the efficiency vs. safety trade-off in the plants' xylem.  相似文献   

20.
In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought‐induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re‐watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re‐watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re‐watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non‐hydraulic factors influenced stomatal behaviour post drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号