首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paired helical filaments (PHF) found in Alzheimer's disease (AD) brain are composed mainly of the hyperphosphorylated form of microtubule-associated protein tau (PHF-tau). It is well known that tau is a good in vitro substrate for Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). To establish the phosphorylation sites, the longest human tau (hTau40) was bacterially expressed and phosphorylated by CaM kinase II, followed by digestion with lysyl endoprotease. The digests were subjected to liquid chromatography/mass spectrometry. We found that 5 of 22 identified peptides were phosphorylated. From the tandem mass spectrometry, two phosphorylation sites (serines 262 and 356) were identified in the tubulin binding sites. When tau was phosphorylated by CaM kinase II, the binding of tau to taxol-stabilized microtubules was remarkably impaired. As both serines 262 and 356 are reportedly phosphorylated in PHF-tau, CaM kinase II may be involved in hyperphosphorylation of tau in AD brain.  相似文献   

2.
The involvement of tau phosphorylation in apoptosis resembling Alzheimer's disease (AD) was investigated using a cell model of P19 cells stably expressing human tau441 (tau/P19 cells). Apoptotic cell death was observed specifically in tau/P19 cells during neural differentiation with retinoic acid (RA) treatment. A CaM kinase II inhibitor, KN-93, protected tau/P19 cells from apoptosis, although it stimulated the cell death of wild-type P19 cells (wt/P19 cells). W-7 and calmidazolium, calmodulin antagonists, also specifically inhibited the apoptosis of tau/P19 cells. LiCl, an inhibitor of glycogen synthase 3, a tau kinase, was effective in protecting tau/P19 cells from apoptosis, but the protective effect was less than that of CaM kinase II inhibitor and calmodulin antagonists. Tau in the nuclei of tau/P19 cells was phosphorylated at the sites for CaM kinase II detected by an antibody recognizing a phosphorylated form of tau. These results indicated that CaM kinase II was involved in the apoptosis of tau/P19 cells induced by RA treatment.  相似文献   

3.
The involvement of tau phosphorylation in apoptosis resembling Alzheimer's disease (AD) was investigated using a cell model of P19 cells stably expressing human tau441 (tau/P19 cells). Apoptotic cell death was observed specifically in tau/P19 cells during neural differentiation with retinoic acid (RA) treatment. A CaM kinase II inhibitor, KN-93, protected tau/P19 cells from apoptosis, although it stimulated the cell death of wild-type P19 cells (wt/P19 cells). W-7 and calmidazolium, calmodulin antagonists, also specifically inhibited the apoptosis of tau/P19 cells. LiCl, an inhibitor of glycogen synthase 3, a tau kinase, was effective in protecting tau/P19 cells from apoptosis, but the protective effect was less than that of CaM kinase II inhibitor and calmodulin antagonists. Tau in the nuclei of tau/P19 cells was phosphorylated at the sites for CaM kinase II detected by an antibody recognizing a phosphorylated form of tau. These results indicated that CaM kinase II was involved in the apoptosis of tau/P19 cells induced by RA treatment.  相似文献   

4.
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in hen, human, and other sensitive species. This is characterized by mild ataxia, which progresses to severe ataxia or paralysis in a few days. Ultrastructurally, OPIDN is associated with the degeneration of axons in central and peripheral nervous systems. Bacterially expressed longest human tau protein (htau40) phosphorylated by DFP-treated hen brain supernatant showed a decrease in microtubule binding in a shorter time than that phosphorylated by control hen brain supernatant. The decrease in htau40-microtubule binding observed on htau40 phosphorylation by the recombinant Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) alpha-subunit showed that CaM kinase II present in brain supernatant could participate in tau phosphorylation even in the absence of Ca2+/CaM and decrease tau-microtubule binding. In addition, use of htau40 mutants, htau40m1 (Ala416) and htau40m6 (Asp416), suggested that replacement of Ser416 by neutral or acidic amino acid produced some change in htau40 conformation that caused diminished binding with microtubules phosphorylated by brain supernatant in the presence of ethylene glycol bis(beta-aminoethyl ether) N, N'tetraacetic acid (EGTA). The change in conformation produced by Ser416 phosphorylation, however, was different from that produced by mutants since only nonmutated htau40 showed a significant decrease in binding with microtubules on phosphorylation by recombinant CaM kinase II in the presence of Ca2+/CaM compared to that obtained by phosphorylation in the presence of EGTA. This study showed that enhanced Ca2+/CaM-dependent protein kinase activity in DFP-treated hen brain supernatant may cause decreased tau-microtubule binding and destabilization of microtubules and may be involved in axonal degeneration in OPIDN.  相似文献   

5.
GAP-43 is a neuronal calmodulin-binding phosphoprotein that is concentrated in growth cones and presynaptic terminals. By sequencing tryptic and endoproteinase Asp-N phosphopeptides and directly determining the release of radioactive phosphate, we have identified three sites (serines 41 and 96 and threonine 172) that are phosphorylated, both in cultured neurons and in neonatal rat brain. These three sites account for most of the 32PO4 that was incorporated into GAP-43 in cultured neurons; 8-15% of each site was occupied with phosphate in GAP-43 isolated from neonatal rat brain. Phosphorylation of serine 41 in cultured neurons was stimulated by phorbol ester, indicating that it is the only site phosphorylated by protein kinase C. The resemblance of the sequence surrounding the other two sites suggests that they may be substrates for the same protein kinase. None of the sites phosphorylated by casein kinase II in vitro was phosphorylated in living cells or in neonatal rat brain. These results show that GAP-43 is a substrate for at least one protein kinase in addition to protein kinase C in living cells and brain.  相似文献   

6.
In order to examine the possible involvements of Ca2+/calmodulin-dependent protein kinases (CaM kinases) in the regulation of ribosomal functions, we tested the phosphorylation of rat ribosomal protein S19 (RPS19) by various CaM kinases in vitro . We found that CaM kinase Iα, but not CaM kinase Iβ1, Iβ2, II, or IV, robustly phosphorylated RPS19. From the consensus phosphorylation site sequence, Ser59, Ser90, and Thr124 were likely to be phosphorylated; therefore, we mutated each amino acid to alanine and found that the mutation of Ser59 to alanine strongly attenuated phosphorylation by CaM kinase Iα, suggesting that Ser59 was a major phosphorylation site. Furthermore, we produced a specific antibody against RPS19 phosphorylated at Ser59, and found that Ser59 was phosphorylated both in GT1-7 cells and rat brain. Phosphorylation of RPS19 in GT1-7 cells was inhibited by KN93, an inhibitor of CaM kinases. Immunoblot analysis after subcellular fractionation of rat brain demonstrated that phosphorylated RPS19 was present in 80S ribosomes. Phosphorylation of RPS19 by CaM kinase Iα augmented the interaction of RPS19 with the previously identified S19 binding protein. These results suggest that CaM kinase Iα regulates the functions of RPS19 through phosphorylation of Ser59.  相似文献   

7.
A 50-kDa protein was recognized in rat embryo fibroblast 3Y1 cells with an affinity-purified antibody against rat brain Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). When the cytosolic extract from quiescent 3Y1 cells was immunoprecipitated with the antibody, the 50-kDa protein in the immunoprecipitate became phosphorylated in a Ca2+- and calmodulin-dependent manner following exposure to [gamma-32P]ATP. Moreover, the reaction proceeded through an intramolecular mechanism. These results suggest that the 50-kDa protein is a subunit of CaM kinase II in rat 3Y1 cells. The addition of 10% fetal calf serum to quiescent 3Y1 cells caused a rapid increase in the phosphorylation of the 50-kDa protein, which was immunoprecipitated with the affinity-purified anti-CaM kinase II antibody. The phosphorylation of CaM kinase II was detected as early as 20 s after the addition of serum, reached the maximal level at 2 min, and decreased to the basal level within 60 min. Platelet-derived growth factor and epidermal growth factor also elicited the phosphorylation of the 50-kDa protein in quiescent 3Y1 cells, while neither insulin nor 12-O-tetradecanoylphorbol-13-acetate did. Calcium ionophores, A23187 and ionomycin, also caused the phosphorylation of the protein in 3Y1 cells. Moreover, phosphopeptide mappings of the phosphorylated 50-kDa subunit generated in response to serum, EGF, and A23187 yielded patterns similar to that generated from the immunoprecipitated 50-kDa subunit phosphorylated in vitro. Phosphoamino acid analysis of the phosphorylated subunit demonstrated that serine residue was the major amino acid labeled under any condition. These results suggest that CaM kinase II undergoes phosphorylation in response to various stimuli that can increase the free Ca2+ concentration in the cytoplasm of quiescent fibroblast cells and therefore probably mediates at least some of the biological actions of growth factors.  相似文献   

8.
DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32,000, is phosphorylated in vitro by casein kinase II at a site which is also phosphorylated in intact cells. In the present study, we show that a protein kinase activity, present in caudate-putamen cytosol, phosphorylates DARPP-32 on a seryl residue located on the same thermolytic peptide that is phosphorylated by purified casein kinase II. This DARPP-32 serine kinase was indistinguishable from casein kinase II on the basis of a number of biochemical criteria. Excitotoxic lesions of the caudate-putamen and immunocytochemistry revealed the presence of casein kinase II in the medium-sized striatonigral neurons which are known to contain DARPP-32. Casein kinase II activity was high in all rat brain regions studied, and casein kinase II-like immunoreactivity was detected in most brain neurons, although some neuronal populations (e.g., cortical pyramidal cells and large striatal neurons) were stained more intensely than others. In rat caudate-putamen, 45% of the total casein kinase II activity was in the cytosol and 20% in the synaptosomal fraction. In mouse cerebral cortex and caudate-putamen, casein kinase II activity was high at embryonic day 16, and remained elevated during development. In addition to DARPP-32, several major substrates for casein kinase II were observed specifically in brain, but not in liver extracts. The high activity of casein kinase II in brain from the embryonic period to adult age and the existence of a number of specific substrates suggest that this enzyme may play an important role in both developing and mature brain, possibly in modulating the responsiveness of target proteins to various extracellular signals.  相似文献   

9.
Neurofibrillary tangles, which are major pathological hallmarks of Alzheimer's disease (AD), are composed of paired helical filaments (PHFs) containing hyperphosphorylated tau. Specific kinases regulate tau phosphorylation and are closely linked to the pathogenesis of AD. We have characterized a human tau-tubulin kinase 1 (TTBK1) gene located on chromosome 6p21.1. TTBK1 is a serine/threonine/tyrosine kinase that is conserved among species and belongs to the casein kinase 1 superfamily. It is specifically expressed in the brain, especially in the cytoplasm of cortical and hippocampal neurons. TTBK1 phosphorylates tau proteins in both a Mg2+- and a Mn2+-dependent manner. Phosphopeptide mapping and immunoblotting analysis confirmed a direct tau phosphorylation by TTBK1 at Ser198, Ser199, Ser202 and Ser422, which are also phosphorylated in PHFs. TTBK1 also induces tau aggregation in human neuronal cells in a dose-dependent manner. We conclude that TTBK1 is a neuron-specific dual kinase involved in tau phosphorylation at AD-related sites and is also associated with tau aggregation.  相似文献   

10.
D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] 3-kinase, the enzyme responsible for production of D-myo-inositol 1,3,4,5-tetrakisphosphate, was activated 3- to 5-fold in homogenates of rat brain cortical slices after incubation with carbachol. The effect was reproduced in response to UTP in Chinese hamster ovary (CHO) cells overexpressing Ins(1,4,5)P3 3-kinase A, the major isoform present in rat and human neuronal cells. In ortho-32P-labelled cells, the phosphorylated 53 kDa enzyme could be identified after receptor activation by immunoprecipitation. The time course of phosphorylation was very similar to that observed for carbachol (or UTP)-induced enzyme activation. Enzyme phosphorylation was prevented in the presence of okadaic acid. Calmodulin (CaM) kinase II inhibitors (i.e. KN-93 and KN-62) prevented phosphorylation of Ins(1,4,5)P3 3-kinase. Identification of the phosphorylation site in transfected CHO cells indicated that the phosphorylated residue was Thr311. This residue of the human brain sequence lies in an active site peptide segment corresponding to a CaM kinase II-mediated phosphorylation consensus site, i.e. Arg-Ala-Val-Thr. The same residue in Ins(1,4,5)P3 3-kinase A was also phosphorylated in vitro by CaM kinase II. Phosphorylation resulted in 8- to 10-fold enzyme activation and a 25-fold increase in sensitivity to the Ca2+:CaM complex. In this study, direct evidence is provided for a novel regulation mechanism for Ins(1,4,5)P3 3-kinase (isoform A) in vitro and in intact cells.  相似文献   

11.
p38 kinase is activated in the Alzheimer's disease brain   总被引:19,自引:0,他引:19  
The p38 mitogen-activated protein kinase is a stress-activated enzyme responsible for transducing inflammatory signals and initiating apoptosis. In the Alzheimer's disease (AD) brain, increased levels of phosphorylated (active) p38 were detected relative to age-matched normal brain. Intense phospho-p38 immunoreactivity was associated with neuritic plaques, neuropil threads, and neurofibrillary tangle-bearing neurons. The antibody against phosphorylated p38 recognized many of the same structures as an antibody against aberrantly phosphorylated, paired helical filament (PHF) tau, although PHF-positive tau did not cross-react with the phospho-p38 antibody. These findings suggest a neuroinflammatory mechanism in the AD brain, in which aberrant protein phosphorylation affects signal transduction elements, including the p38 kinase cascade, as well as cytoskeletal components.  相似文献   

12.
Hong DJ  Pei AL  Sun FY  Zhu CQ 《生理学报》2003,55(2):142-146
近年来研究发现,阿尔茨海默病(Alzheimer′s disease,AD)病人脑内神经元细胞周期相关蛋白的异常表达与AD相关病理改变存在关联。为探讨β-淀粉样蛋白(β—amyloid,Aβ)的毒性作用能否导致成年脑神经元表达细胞周期相关蛋白,以及细胞周期相关蛋白表达与神经损伤之间的关系,我们运用免疫组化、积分光密度分析等方法对Aβ25-35多肽片段单侧杏仁核注射的大鼠脑进行了研究。结果显示,Aβ25-35注射的大鼠脑内除了有与神经纤维缠结相关的磷酸化tau蛋白和凋亡相关蛋白Bax蛋白水平增加外,术后7d细胞周期相关蛋白cyclin A和cyclin B1蛋白在神经元内异常表达,但术后21d时cyclin A的表达有所降低,而cyclin B1在脑内神经元中已检测不到;免疫荧光双标结果显示Aβ25-35注射后7d的大鼠脑内有较多的cyclin B1和Bax、cyclin B1和磷酸化tau蛋白共存的神经元,而Bax与磷酸化tau蛋白阳性信号很少共存在同一细胞上。以上结果提示,Aβ可导致成年脑神经元表达细胞周期相关蛋白,这些神经元可能会通过与Bax相关的凋亡途径死亡,或首先导致与AD神经纤维缠结相关的tau蛋白磷酸化。  相似文献   

13.
Microtubule associated protein tau is abnormally hyperphosphorylated in Alzheimer disease (AD) brain. To investigate the role of protein kinases involved in this lesion, metabolically active slices made from brains of adult rats were treated with or without various specific kinase activators in oxygenated artificial cerebrospinal fluid. The basal kinase activities of protein kinase-A (PKA), CaM Kinase II and GSK-3 were stimulated more than two-fold by isoproterenol, bradykinin and wortmannin, respectively. We found that cdk5 activity was co-stimulated with PKA by isoproterenol. Sequential activation of PKA (+cdk5), CaM Kinase II and GSK-3 produced hyperphosphorylation of tau at Ser-198/Ser-199/Ser-202, Ser-214, Thr-231/Ser-235, Ser-262, Ser-396/Ser-404 and Ser-422 sites. Like AD P-tau, the P-tau from brain slices bound to normal tau and its binding to tubulin was inhibited. These studies suggest that PKA, cdk5, CaM Kinase II and GSK-3 are involved in the regulation of phosphorylation of tau and that AD-type phosphorylation of tau is probably a product of the synergistic action of two or more of these kinases.  相似文献   

14.
In Alzheimer's disease, hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies and fails to promote microtubule assembly. Dysregulation of the brain-specific tau protein kinase II is reported to play an important role in the pathogenesis of Alzheimer's disease (Patrick, G. N., Zukerberg, L., Nikolic, M., De La Monte, S., Dikkes, P., and Tsai, L.-H. (1999) Nature 402, 615-622). We report here that in vitro phosphorylation of human tau by human recombinant tau protein kinase II severely inhibits the ability of tau to promote microtubule assembly as monitored by tubulin polymerization. The ultrastructure of tau-mediated polymerized tubulin was visualized by electron microscopy and compared with phosphorylated tau. Consistent with the observed slower kinetics of tubulin polymerization, phosphorylated tau is compromised in its ability to generate microtubules. Moreover, we show that phosphorylation of microtubule-associated tau results in tau's dissociation from the microtubules and tubulin depolymerization. Mutational studies with human tau indicate that phosphorylation by tau protein kinase II at serine 396 and serine 404 is primarily responsible for the functional loss of tau-mediated tubulin polymerization. These in vitro results suggest a possible role for tau protein kinase II-mediated tau phosphorylation in initiating the destabilization of microtubules.  相似文献   

15.
Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic GnRH neurons. There is accumulating evidence that GnRH neurons have GnRH receptors and that the autocrine action of GnRH activates MAP kinase. In this study, we found that KN93, an inhibitor of Ca(2+)/calmodulin-dependent protein kinases (CaM kinases), inhibited the GnRH-induced activation of MAP kinase in immortalized GnRH neurons (GT1-7 cells). Immunoblot analysis indicated that the CaM kinase IIdelta2 isoform (CaM kinase IIdelta2) and synapsin I were expressed in GT1-7 cells. GnRH treatment rapidly increased phosphorylation of synapsin I at serine 603, a specific phosphorylation site for CaM kinase II, suggesting that GnRH treatment rapidly activated CaM kinase IIdelta2. In addition, when we stably overexpressed CaM kinase IIdelta2 in GT1-7 cells, the activation of MAP kinase was strongly enhanced. These results suggest that CaM kinase IIdelta2 was involved in the GnRH-induced activation of MAP kinase in GT1-7 cells.  相似文献   

16.
Some of the tryptophan catabolites produced through the kynurenine pathway (KP), and more particularly the excitotoxin quinolinic acid (QA), are likely to play a role in the pathogenesis of Alzheimer''s disease (AD). We have previously shown that the KP is over activated in AD brain and that QA accumulates in amyloid plaques and within dystrophic neurons. We hypothesized that QA in pathophysiological concentrations affects tau phosphorylation. Using immunohistochemistry, we found that QA is co-localized with hyperphosphorylated tau (HPT) within cortical neurons in AD brain. We then investigated in vitro the effects of QA at various pathophysiological concentrations on tau phosphorylation in primary cultures of human neurons. Using western blot, we found that QA treatment increased the phosphorylation of tau at serine 199/202, threonine 231 and serine 396/404 in a dose dependent manner. Increased accumulation of phosphorylated tau was also confirmed by immunocytochemistry. This increase in tau phosphorylation was paralleled by a substantial decrease in the total protein phosphatase activity. A substantial decrease in PP2A expression and modest decrease in PP1 expression were observed in neuronal cultures treated with QA. These data clearly demonstrate that QA can induce tau phosphorylation at residues present in the PHF in the AD brain. To induce tau phosphorylation, QA appears to act through NMDA receptor activation similar to other agonists, glutamate and NMDA. The QA effect was abrogated by the NMDA receptor antagonist memantine. Using PCR arrays, we found that QA significantly induces 10 genes in human neurons all known to be associated with AD pathology. Of these 10 genes, 6 belong to pathways involved in tau phosphorylation and 4 of them in neuroprotection. Altogether these results indicate a likely role of QA in the AD pathology through promotion of tau phosphorylation. Understanding the mechanism of the neurotoxic effects of QA is essential in developing novel therapeutic strategies for AD.  相似文献   

17.
Phosphorylation of rat brain calmodulin in vivo and in vitro   总被引:1,自引:0,他引:1  
After injection of [32p]orthophosphate into the third ventricle of rat brain, calmodulin(CaM) was prepared from soluble(S2) and particulate(P2) fractions of the whole brain and analyzed by SDS-PAGE in the presence or absence of Ca2+ followed by autoradiography. CaM from both fractions(S2 and P2) was significantly phosphorylated by endogenous protein kinase(s) of rat brain. The incorporation of radioactive phosphate into membrane-bound CaM from the P2 fraction was much higher than that of soluble CaM from the S2 fraction. CaM was phosphorylated in vitro by casein kinase 2 but not by casein kinase 1 or by cyclic AMP-dependent protein kinase, suggesting that casein kinase 2 may be, at least in part, responsible for the phosphorylation of CaM even in vivo.  相似文献   

18.
Phosphorylation of neuronal nitric-oxide synthase (nNOS) by Ca2+/calmodulin (CaM)-dependent protein kinases (CaM kinases) including CaM kinase Ialpha (CaM-K Ialpha), CaM kinase IIalpha (CaM-K IIalpha), and CaM kinase IV (CaM-K IV), was studied. It was found that purified recombinant nNOS was phosphorylated by CaM-K Ialpha, CaM-K IIalpha, and CaM-K IV at Ser847 in vitro. Replacement of Ser847 with Ala (S847A) prevented phosphorylation by CaM kinases. Phosphorylated recombinant wild-type nNOS at Ser847 (approximately 0.5 mol of phosphate incorporation into nNOS) exhibited a 30% decrease of Vmax with little change of both the Km for L-arginine and Kact for CaM relative to unphosphorylated enzyme. The activity of mutant S847D was decreased to a level 50-60% as much as the wild-type enzyme. The decreased NOS enzyme activity of phosphorylated nNOS at Ser847 and mutant S847D was partially due to suppression of CaM binding, but not to impairment of dimer formation which is thought to be essential for enzyme activation. Inactive nNOS lacking CaM-binding ability was generated by mutation of Lys732-Lys-Leu to Asp732-Asp-Glu (Watanabe, Y., Hu, Y., and Hidaka, H. (1997) FEBS Lett. 403, 75-78). It was phosphorylated by CaM kinases, as was the wild-type enzyme, indicating that CaM-nNOS binding was not required for the phosphorylation reaction. We developed antibody NP847, which specifically recognize nNOS in its phosphorylated state at Ser847. Using the antibody NP847, we obtained evidence that nNOS is phosphorylated at Ser847 in rat brain. Thus, our results suggest that CaM kinase-induced phosphorylation of nNOS at Ser847 alters the activity control of this enzyme.  相似文献   

19.
All six isoforms of the microtubule-associated protein tau are present in hyperphosphorylated states in the brains of patients with Alzheimer's disease (AD). It is presently unclear how such hyperphosphorylation of tau is controlled. In a previous study (Singh et al. Arch Biochem Biophys 328: 43-50, 1996) we have shown that three-repeat taus containing two N-terminal inserts were phosphorylated to higher levels and at different sites compared to those either lacking or containing only one such insert. We have extended these observations in this study by comparing the phosphorylation of tau isoforms containing three-repeats (t3, t3L) and four-repeats (t4, t4L). In the absence of N-terminal inserts in tau structure (t3, t4) both CaM kinase II and C-kinase phosphorylated four-repeat tau (t4) to a higher extent than three-repeat tau (t3). When two N-terminal inserts are present in tau structure (t3L, t4L), then three-repeat tau (t3L) is phosphorylated to a higher extent than four-repeat tau (t4L) by these kinases. CK-1 and GSK-3 phosphorylated each of the above pairs of three-repeat and four-repeat taus to the same extents. However, after an initial prephosphorylation of the taus by CaM kinase II, GSK-3 differentially phosphorylated three-repeat and four-repeat taus. Under these conditions thr 231, ser 235, ser 396, and ser 404 were phosphorylated to greater extents in four-repeat tau (t4) compared to three-repeat tau (t3) in the absence of N-terminal inserts. In the presence of such inserts these sites were phosphorylated to greater extents in three-repeat (t3L) compared to four-repeat (t4L) tau. Our results indicate that the extents to which tau isoforms are phosphorylated in normal and AD brain depends on (a) the number of repeats (3 or 4), (b) the number of N-terminal inserts (0, 1, or 2), and (c) the initial phosphorylation state of tau.  相似文献   

20.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号