首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of a mutant form of spermidine/spermine N(1)-acetyltransferase, L156F (L156F-SSAT), that is present in Chinese hamster ovary cells selected for resistance to the polyamine analogue N(1,) N(11)-bis(ethyl)norspermine (BE 3-3-3) were investigated. Increased K(m) values, decreased V(max) values, and decreased k(cat) values with both polyamine substrates, spermidine and spermine, indicated that L156F-SSAT is an inferior and less efficient acetyltransferase than wild-type SSAT. Transfection of L156F-SSAT into C55.7Res cells indicated that cellular SSAT activity per nanogram of SSAT protein correlated well with the in vitro data and was also approximately 20-fold less for the mutant protein than for wild-type SSAT. Increased expression of L156F-SSAT was unable to restore cellular sensitivity to BE 3-3-3 despite providing measurable basal SSAT activity. Only a 4-fold induction of L156F-SSAT activity resulted from the exposure of cells to the polyamine analogue, whereas wild-type SSAT was induced approximately 300-fold. Degradation studies indicated that BE 3-3-3 cannot prevent ubiquitination of L156F-SSAT and is therefore unable to protect the mutant protein from degradation. These studies indicate that the decreased cellular sensitivity to BE 3-3-3 is caused by the lack of SSAT activity induction in the presence of the analogue due to its inability to prevent the rapid degradation of the L156F-SSAT protein.  相似文献   

2.
3.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

4.
The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.  相似文献   

5.
Spermidine/spermine N1-acetyltransferase (SSAT) appears to be the rate-limiting enzyme of polyamine catabolism, yet studies of its regulation have been limited by the low amounts of SSAT in uninduced cells. A system for studying SSAT was established by stably transfecting Chinese hamster ovary cells with a construct where SSAT cDNA was under control of the cytomegalovirus promoter. Thirteen of 44 clones expressed significantly increased SSAT activity (650-1900 compared with 24 pmol/min/mg protein in control cells). SSAT activity was directly proportional to SSAT protein, which turned over very rapidly (t(1)/(2) of 29 min) and was degraded through the ubiquitin/proteasomal pathway. The increased SSAT activity caused perturbations in polyamine homeostasis and led to a reduction in the rate of growth under clonal conditions. N1,N12-bis(ethyl)spermine greatly increased SSAT activity in controls and SSAT transfected clones (to about 10 and 60 nmol/min/mg protein, respectively). N1, N12-Bis(ethyl)spermine caused an increase in the SSAT half-life and a slight increase in SSAT mRNA, but these changes were insufficient to account for the increase in SSAT protein suggesting that translational regulation of SSAT must also occur.  相似文献   

6.
Extreme inducibility of spermidine/spermine acetyltransferase (SSAT) by bis-ethyl derivatives of spermine in human large cell lung carcinoma and melanoma cells has prompted biochemical characterization of the purified enzyme. Treatment of human MALME-3 melanoma cells with 10 microM N1,N11-bis(ethyl)norspermine (BENSPM) for 48-72 h increased SSAT activity by some 1000- to 4000-fold and enabled purification of the enzyme by established procedures--binding on immobilized spermine and elution with spermine followed by binding on Matrex Blue A and elution with coenzyme A. The enzyme showed a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a single subunit species and molecular weight of approximately 20,300 Da. By gel permeation chromatography, the holoenzyme was found to have a molecular weight of 80,000 Da, suggesting a total of four identical subunits. Purified SSAT had a specific activity of 285 mumol/min/mg for spermidine and Km values of 5.9 microM for acetylcoenzyme A, 55 microM for spermidine, 5 microM for spermine, 36 microM for N1-acetylspermine, 1.6 microM for norspermidine, and 4 microM for norspermine. Homologs of BENSPM were found to be competitive inhibitors of spermidine acetylation, with Ki values of 0.8 microM for BENSPM, 1.9 microM for N1,N12-bis-(ethyl)spermine and 17 microM for N1,N14-bis-(ethyl)-homospermine. Correlation of these values with the relative abilities of the homologs to increase SSAT in intact cells suggests that formation of an enzyme inhibitor complex may play a contributing role in enzyme induction.  相似文献   

7.
Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine.  相似文献   

8.
Various ethyl and benzyl spermine analogues, including the anticancer agent N1,N12-bis(ethyl)spermine, were studied for their ability to affect the growth of cultured Escherichia coli cells, to inhibit [3H]putrescine and [3H]spermine uptake into cells, and to modulate the peptidyltransferase activity (EC 2. 3. 2. 12). Relative to other cell lines, growth of E. coli was uniquely insensitive to these analogues. Nevertheless, these analogues conferred similar modulation of in vitro protein synthesis and inhibition of [3H]putrescine and [3H]spermine uptake, as is seen in other cell types. Thus, both ethyl and benzyl analogues of spermine not only promote the formation and stabilization of the initiator ribosomal ternary complex, but they also have a sparing effect on the Mg2+ requirements. Also, in a complete cell-free protein-synthesizing system, these analogues at low concentrations stimulated peptide bond formation, whereas at higher concentrations, they inhibited the reaction. The ranking order for stimulation of peptide-bond formation by the analogues was N4,N9-dibenzylspermine > N4, N9-bis(ethyl)spermine congruent with N1-ethylspermine > N1, N12-bis(ethyl)spermine, whereas the order of analogue potency regarding the inhibitory effect was inverted, with inhibition constant values of 10, 3.1, 1.5, and 0.98 microM, respectively. Although the above analogues failed to interact with the putrescine-specific uptake system, they exhibited high affinity for the polyamine uptake system encoded by the potABCD operon. Despite this fact, none of the analogues could be internalized by the polyamine transport system, and therefore they could not influence the intracellular polyamine pools and growth of E. coli cells.  相似文献   

9.
In an effort to study the mechanism underlying the observed phenotype-specific response of human lung cancer cell lines to a polyamine analogue, N1,N12-bis(ethyl)spermine(BESpm), we have isolated a BESpm resistant cell line from the BESpm-sensitive large cell lung carcinoma line NCIH157. The mutant line exhibits identical growth rates in the presence or absence of the analogue. However, the overall growth of mutant cells reaches stationary phase earlier than that of the parental cells. In contrast to the parental cells, where a superinduction of spermidine/spermine N1-acetyltransferase (SSAT) is associated with BESpm toxicity, treatment of this resistant line with BESpm did not induce SSAT mRNA or enzyme activity. BESpm treatment was not effective in depleting the intracellular polyamine pools and very low intracellular BESpm levels were detected. This BESpm resistance is not mediated by multidrug resistance (MDR) protein, since these cells maintain their sensitivity to the antineoplastic agent adriamycin. Treatment of these cells with methylglyoxal bis(guanylhydrazone) (MGBG), an AdoMetDC inhibitor which enters cell using polyamine transport system, shows no inhibition of cell growth. Our data suggest that these mutant cells are deficient in polyamine transport. Consistent with this hypothesis, exogenous polyamines did not prevent difluoromethylomithine (DFMO) induced growth inhibition in the mutant cells. © 1996 Wiley-Liss, Inc.  相似文献   

10.
The mechanism of the antiproliferation effect of N1,N12-bis(ethyl)spermine (BESPM) was studied in detail using mouse FM3A cells, since this polyamine analogue mimics the functions of spermine in several aspects [Igarashi, K., Kashiwagi, K., Fukuchi, J., Isobe, Y., Otomo, S. & Shirahata, A. (1990) Biochem. Biophys. Res. Commun. 172, 715-720]. Our results indicate that not only the decrease in sperimine and spermine caused by BESPM but also its accumulation play important roles on the inhibition of cell growth by BESPM, since BESPM accumulated in cells at a concentration fivefold that of spermidine in control cells. In comparison with the polaymine-deficient cells caused by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and ethylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, the behavior of polyamine-deficient cells caused by BESPM was different as follows: the inhibition of cell growth by BESPM was not abrogated by spermine or spermidine; polyamine uptake, which is stimulated during polyamine deficiency, was greatly inhibited, while spermidine/spermine N1-acetyltransferase activity, which is inhibited during polyamine deficiency, was enhanced in BESPM-treated cells; thymidine kinase activity did not decrease in BESPM-treated cells; inhibition of cell growth and macromolecule synthesis by BESPM correlated with the swelling of mitochondria and the decrease in ATP content; BESPM caused cell death when incubated together for several days. The role of BESPM accumulation on inhibition of cell growth is discussed.  相似文献   

11.
The spermine analogue N(1),N(11)-diethylnorspermine (DENSPM) efficiently depletes the cellular pools of putrescine, spermidine and spermine by down-regulating the activity of the polyamine biosynthetic enzymes and up-regulating the activity of the catabolic enzyme spermidine/ spermine N(1)-acetyltransferase (SSAT). In the breast cancer cell line L56Br-C1, treatment with 10 microm DENSPM induced SSAT activity 60 and 240-fold at 24 and 48 h after seeding, respectively, which resulted in polyamine depletion. Cell proliferation appeared to be totally inhibited and within 48 h of treatment, there was an extensive apoptotic response. Fifty percent of the cells were found in the sub-G(1) region, as determined by flow cytometry, and the presence of apoptotic nuclei was morphologically assessed by fluorescence microscopy. Caspase-3 and caspase-9 activities were significantly elevated 24 h after seeding. At 48 h after seeding, caspase-3 and caspase-9 activities were further elevated and at this time point a significant activation of caspase-8 was also found. The DENSPM-induced cell death was dependent on the activation of the caspases as it was inhibited by the general caspase inhibitor Z-Val-Ala-Asp fluoromethyl ketone. The results are discussed in the light of the L56Br-C1 cells containing mutated BRCA1 and p53, two genes involved in DNA repair.  相似文献   

12.
13.
Exposure of human colon tumor (HT 29 cells) to N1,N12-bis(ethyl)spermine and analogs produced a rapid loss of intracellular polyamines. This loss was brought about predominantly by an increased excretion of spermidine. N1,N11-Bis(ethyl)norspermine and N1,N12-Bis(ethyl)spermine were potent inducers of spermidine/spermine N1-acetyltransferase, and this induction facilitated the efflux of polyamines by enhancing the conversion of spermine into spermidine. N1,N14-Bis(ethyl)homospermine, which did not induce spermidine/spermine N1-acetyltransferase, also caused the loss of spermidine from the cell but was less effective in bringing about the decline in intracellular spermine. These results indicate that cellular polyamine levels can be regulated by excretion of spermidine and that the bis(ethyl)spermine derivatives deplete intracellular polyamine content by interference with this process.  相似文献   

14.
Polyamines are known to be involved in cell growth regulation in breast cancer. To evaluate the efficacy of bis(ethyl)polyamine analogs for breast cancer therapy and to understand their mechanism of action we measured the effects of a series of polyamine analogs on cell growth, activities of enzymes involved in polyamine metabolism, intracellular polyamine levels, and the uptake of putrescine and spermidine using MCF-7 breast cancer cells. The IC50 values for cell growth inhibition of three of the compounds, N1,N12-bis(ethyl)spermine, N1,N11-bis(ethyl)norspermine, and N1,N14-bis(ethyl)homospermine, were in the range of 1-2 microM. Another group of three compounds showed antiproliferative activity at about 5 microM level. These compounds are also capable of suppressing colony formation in soft agar assay and inducing apoptosis of MCF-7 cells. The highly effective growth inhibitory agents altered the activity of polyamine biosynthetic and catabolic enzymes and down-regulated the transport of natural polyamines, although each compound produced a unique pattern of alterations in these parameters. HPLC analysis showed that cellular uptake of bis(ethyl)polyamines was highest for bis(ethyl)spermine. We also analyzed polyamine analog conformations and their binding to DNA minor or major grooves by molecular modelling and molecular dynamics simulations. Results of these analyses indicate that tetramine analogs fit well in the minor groove of DNA whereas, larger compounds extend out of the minor groove. Although major groove binding was also possible for the short tetramine analogs, this interaction led to a predominantly bent conformation. Our studies show growth inhibitory activities of several potentially important analogs on breast cancer cells and indicate that multiple sites are involved in the mechanism of action of these analogs. While the activity of an analog may depend on the sum of these different effects, molecular modelling studies indicate a correlation between antiproliferative activity and stable interactions of the analogs with major or minor grooves of DNA.  相似文献   

15.
The superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) has been implicated in the cell type-specific cytotoxic activity of some polyamine analogues. We now report that one polyamine analogue, 1, 12-dimethylspermine (DMSpm), produces a large induction of SSAT with no significant effects on growth in the human large cell lung carcinoma line, NCI H157. This cell line has been demonstrated to respond to other analogues with SSAT superinduction and cell death. Treatment of the lung cancer cell line with DMSpm produces a rapid increase in SSAT activity and a near complete depletion of the natural polyamines. Additionally, DMSpm supports cell growth in cells which have been depleted of their natural polyamines by the ornithine decarboxylase inhibitor, 2-difluoromethylornithine. The current results suggest that significant induction of SSAT can occur in the absence of cytotoxicity when the inducing polyamine analogue can support growth and that increased SSAT activity alone is not sufficient for cytotoxicity to occur. © 1995 Wiley-Liss Inc.  相似文献   

16.
17.
Acetylation of polyamines by spermidine/spermine N(1)-acetyltransferase (SSAT) has been implicated in their degradation and/or export out of the cell. The relationship of SSAT to polyamine pool dynamics and cell growth is not yet clearly understood. MCF-7 human breast carcinoma cells were transfected with tetracycline-regulated (Tet-off) SSAT human cDNA or murine gene. Doxycycline removal for >2 days caused a approximately 20-fold increase in SSAT RNA and a approximately 10-fold increase in enzyme activity. After 4 days, intracellular putrescine and spermidine pools were markedly lowered, and cell growth was inhibited. Growth inhibition could not be prevented with exogenous polyamines due to a previously unrecognized ability of SSAT to rapidly acetylate influxing polyamines and thereby prevent restoration of the endogenous pools. Instead, cells accumulated high levels of N(1)-acetylspermidine, N(1)-acetylspermine, and N(1), N(12)-diacetylspermine, a metabolite not previously reported in mammalian cells. Doxycycline deprivation before treatment with N(1), N(11)-diethylnorspermine markedly increased analog induction of SSAT mRNA and activity and enhanced growth sensitivity to the analog by approximately 100-fold. Overall, the findings demonstrate that conditional overexpression of SSAT lowers polyamine pools, inhibits cell growth, and markedly enhances growth sensitivity to certain analogs. The enzyme also plays a remarkably efficient role in maintaining polyamine pool homeostasis during challenges with exogenous polyamines.  相似文献   

18.
19.
The regulation of ornithine decarboxylase (ODC) activity by the polyamine derivatives N1,N8-bis(ethyl)-spermidine and N1,N12-bis(ethyl)spermine was studied using a line of L1210 cells resistant to alpha-difluoromethylornithine (D-R cells), which contain very high levels of ODC, and a synthetic mRNA prepared from a plasmid containing an insert corresponding to ODC mRNA adjacent to an SP6 RNA polymerase promoter. Studies in which ODC protein was labeled in the D-R cells by exposure to [35S]methionine indicated that the polyamine derivatives and their physiological counterparts led to an increased rate of degradation of ODC and to a rapid reduction in ODC synthesis without affecting the content of ODC mRNA. Direct evidence that the polyamine derivatives act by inhibiting the translation of the ODC mRNA was obtained by studying their effects on the translation of ODC mRNA in reticulocyte lysates. This translation was strongly inhibited by the addition of N1,N8-bis(ethyl)spermidine, spermidine, N1,N12-bis(ethyl)spermine, or spermine but was not affected much by putrescine. The inhibition of the translation of ODC mRNA by either of the bis(ethyl) polyamine derivatives occurred at concentrations which stimulated total protein synthesis showing the selectivity of the reduction in ODC. The effects of polyamine derivatives and polyamines on translation of the plasmid-derived ODC mRNA were identical with those found with the D-R L1210 cell mRNA. This synthetic ODC mRNA lacks 261 bases of the 5'-leader sequences and 200 bases plus the poly(A) section from the 3'-nontranslated sequence. Therefore, these regions appear not to influence sensitivity of the ODC mRNA to inhibition of translation by polyamine derivatives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号