首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using mouse erythroleukaemia cells and different ultrastructural techniques, the morphology was investigated of the nuclear matrix obtained after incubation at 37 degrees C of isolated nuclei. If purified nuclei were heated for 45 min at 37 degrees C, the final matrix exhibited well-recognizable nucleolar remnants, an inner network and a peripheral lamina. Without such incubation only the peripheral lamina was seen surrounding homogeneous, finely granular material. Similar results were obtained with both araldite-embedded and freeze-fractured nuclear matrices, although in the latter case the loose granular material was not evident. Observations of araldite-embedded, heat-treated nuclei revealed clumping of heterochromatin in small, very electron-dense masses with large interchromatin spaces. These ultrastructural aspects were even more striking in freeze-fractured nuclei. Cytochemical matrix analysis by osmium-amine staining for nucleic acids and DNase-gold labelling for DNA localization demonstrated that also matrix residual nucleic acids, mostly RNA, are stabilized by heat exposure of isolated nuclei. The results demonstrate that the morphology of heat-stabilized nuclear matrix is not artefactually affected during the preparation for conventional electron microscopy and suggest a possible involvement of nucleic acids in the heat-induced stabilization of the nuclear matrix.  相似文献   

2.
Summary— Using two-dimensional polyacrylamide gels stained with Coomassie blue we have studied the protein composition of the nuclear matrix obtained from mouse erythroleukemic nuclei kept at O°C throughout the isolation procedure to prepare the high ionic strength resistant fraction (control matrix) or stabilized in vitro or in vivo by different procedures prior to subfractionation (ie 37°C incubation of isolated nuclei; sodium tetrathionate exposure of purified nuclei; heat shock of intact cells). When the matrix obtained from 37°C incubated nuclei was compared with the control matrix, striking differences in the polypeptide pattern were seen if the protein was obtained in both cases from an equivalent number of nuclei. On the other hand, if the same amount of protein for both the samples was applied to the gels the differences were less evident. Sodium tetrathionate stabilization of isolated nuclei and heat shock of intact cells produced a matrix protein pattern that was very similar and differed from that of the in vitro heat-exposed matrix. Using specific polyclonal antisera, we demonstrate that nucleolar proteins B23/numatrin and C23/nucleolin were very abundant in the matrix obtained from chemically-treated nuclei or in vivo heat-stabilized nuclei but were recovered in very small amounts (B23) or completely absent (C23) in the matrix prepared from nuclei heated to 37°C in vitro. Differences were seen also in the recovery of nuclear lamins, and especially lamin B, that was poorly represented in the sodium tetrathionate-stabilized matrix. The results demonstrate that in mouse erythroleukemia cells the increased recovery of nuclear matrix protein that is seen after in vitro heating of isolated nuclei is predominantly due to an additional recovery of the same types of polypeptides that are detected also in the absence of such a treatment. The data also indicate that in vivo heat shock of intact cells produces a nuclear matrix protein pattern that is more similar to the pattern seen after stabilization of purified nuclei with sodium tetrathionate and differs significantly from that obtained by exposing nuclei to 37°C in vitro, unlike to that what previous reports have indicated.  相似文献   

3.
The morphology and the polypeptide composition of the nuclear matrix obtained from 37 degrees C incubated nuclei has been studied in mouse erythroleukemia cells. From a structural point of view, in the absence of heat treatment, the matrix lacked identifiable nucleolar remnants and the internal fibrogranular meshwork whereas a peripheral lamina was seen. On the contrary, the matrix obtained from heat exposed nuclei displayed very electrondense nucleolar remnants and an abundant inner network. These results were obtained irrespective of the type of extracting agent (2M NaCl or 0.2 M (NH4)2SO4) used to remove histones and other soluble proteins. The heat stabilization of the matrix could not be prevented by sulfhydryl blocking chemicals such as iodoacetamide and n-ethylmaleimide, thus suggesting that heat does not stabilize the matrix by inducing the formation of disulfide bonds. Only limited differences in the polypeptide pattern of matrix isolated under different conditions were seen using one-dimensional pore gradient polyacrylamide gels stained with both Coomassie Brilliant Blue and silver despite the fact that the matrix fraction from heat treated nuclei retained about three fold more protein in comparison with controls. The same results were obtained also by means of two-dimensional non-equilibrium gel electrophoresis.  相似文献   

4.
Summary Using mouse erythroleukaemia cells and different ultrastructural techniques, the morphology was investigated of the nuclear matrix obtained after incubation at 37° C of isolated nuclei. If purified nuclei were heated for 45 min at 37° C, the final matrix exhibited well-recognizable nucleolar remnants, an inner network and a peripheral lamina. Without such incubation only the peripheral lamina was seen surrounding homogeneous, finely granular material. Similar results were obtained with both araldite-embedded and freeze-fractured nuclear matrices, although in the latter case the loose granular material was not evident. Observations of araldite-embedded, heat-treated nuclei revealed clumping of heterochromatin in small, very electron-dense masses with large interchromatin spaces. These ultrastructural aspects were even more striking in freeze-fractured nuclei. Cytochemical matrix analysis by osmium-ammine staining for nucleic acids and DNase-gold labelling for DNA localization demonstrated that also matrix residual nucleic acids, mostly RNA, are stabilized by heat exposure of isolated nuclei. The results demonstrate that the morphology of heat-stabilized nuclear matrix is not artefactually affected during the preparation for conventional electron microscopy and suggest a possible involvement of nucleic acids in the heat-induced stabilization of the nuclear matrix.  相似文献   

5.
Karyoskeletal protein fractions prepared from Drosophila melanogaster embryos contain morphologically identifiable remnants of nuclear pore complexes and peripheral lamina as well as what appears to be an internal nuclear "matrix" (Fisher, P. A., M. Berrios, and G. Blobel, 1982, J. Cell Biol., 92: 674-686). Structural stability of these proteinaceous assemblies is dependent on thermal incubation in vitro (37 degrees C, 15 min) before subfractionation of nuclei. In the absence of such incubation, greater than 90% of the total karyoskeletal protein including major polypeptide components of internal "matrix," pore complexes, and the peripheral lamina, is solubilized by 1 M NaCl. In vivo heat shock induces karyoskeletal stabilization resembling that resulting from thermal incubation in vitro. Immunocytochemical studies have been used to establish the effects of heat shock on the organization and distribution of major karyoskeletal marker proteins in situ. Taken together, these results are consistent with the notion that in vivo, regulation of karyoskeletal plasticity (and perhaps form) may be a functionally significant component of the Drosophila heat shock response. They also have broad practical implications for studies pertaining to the structure and function of karyoskeletal protein (nuclear "matrix") fractions isolated from higher eukaryotic cells.  相似文献   

6.
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated wheter or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (Mr 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0° C or 37° C. The matrix fraction retained 20–40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37° C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.  相似文献   

7.
Apoptotic cell death is characterized by deep morphological changes that take place in the nucleus. It is unclear whether modifications also occur in the nuclear matrix, a mainly proteinaceous structure that conceivably acts as a nuclear framework. We have investigated whether biochemical and morphological alterations of the nuclear matrix prepared from apoptotic HL‐60 cells were dependent on the manipulations to which isolated nuclei were subjected before DNase I digestion and 2 M NaCl extraction. Our results showed that the stabilizing procedures employed to preserve the inner fibrogranular network and nucleolar remnants of the matrix (i.e., a 37°C incubation; exposure to sodium tetrathionate at 4°C; exposure to sodium tetrathionate at 37°C) had no effect on the protein recovery of apoptotic nuclear matrices, which was always approximately two‐ to fivefold less than in control matrices. Moreover, one‐ and two‐dimensional gel analysis of nuclear matrix proteins showed that, in apoptotic samples, striking quantitative changes were present, as compared with controls. Once again, these changes were seen irrespective of the stabilizing procedures employed. Also, transmission electron microscope analysis showed similar morphological alterations in all types of apoptotic nuclear matrices. By contrast, the immunofluorescent distribution of the 240‐kDa NuMA protein seen in apoptotic samples was more sensitive to the stabilizing treatments. Our results indicate that the biochemical and morphological changes of the apoptotic nuclear matrix are largely independent of the isolation protocols and strengthen the contention that destruction of the nuclear matrix network is one of the key events leading to apoptotic nuclear destruction. J. Cell. Biochem. 74:99–110, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 degrees C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 degrees C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR-1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca(2+)ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.  相似文献   

9.
We have investigated the effects of intermolecular disulfide crosslinking and temperature-dependent insolubilization of nuclear proteins in vitro on the association of the polyoma large T antigen with the nuclear matrix in polyomavirus-infected mouse 3T6 cells. Nuclear matrices, prepared from polyomavirus-infected 3T6 cells by sequential extraction of isolated nuclei with 1% Triton X-100 (Triton wash), DNase I, and 2 M NaCl (high salt extract) at 4 degrees C, represented 18% of total nuclear protein. Incubation of nuclei with 1 mM sodium tetrathionate (NaTT) to induce disulfide crosslinks or at 37 degrees C to induce temperature-dependent insolubilization prior to extraction, transferred an additional 9-18% of the nuclear protein from the high salt extract to the nuclear matrix. This additional protein represented primarily an increased recovery of the same nuclear protein subset present in nuclear matrices prepared from untreated nuclei. Major constituents of chromatin including histones, hnRNP core proteins, and 98% of nuclear DNA were removed in the high salt extract following either incubation. Polyoma large T antigen was quantified in subcellular fractions by immunoblotting with rat anti-T ascites. Approximately 60-70% of the T antigen was retained in nuclei isolated in isotonic sucrose buffer at pH 7.2. Most (greater than 95%) of the T antigen retained in untreated nuclei was extracted by DNase-high salt treatment. Incubation at 37 degrees C or with NaTT transferred most (greater than 95%) of the T antigen to the nuclear matrix. T antigen solubilized from NaTT-treated matrices with 1% SDS sedimented on sucrose gradients as a large (50-S) complex. These complexes, isolated by immunoprecipitation with anti-T sera, were dissociated by reduction with 2-mercaptoethanol, and SDS-PAGE analysis revealed that T antigen was crosslinked in stoichiometric amounts to several host proteins: 150, 129, 72, and 70 kDa. These host proteins were not present in anti-T immunoprecipitates of solubilized nuclear matrices prepared from iodoacetamide-treated cells. Our results suggest that the majority of polyomavirus large T antigen in infected cells is localized to a specific subnuclear domain which is distinct from the bulk chromatin and is closely associated with the nuclear matrix.  相似文献   

10.
Repair of thermal damage to the Escherichia coli nucleoid.   总被引:4,自引:0,他引:4       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after heat treatment (30 min at 50 degrees C) and subsequent incubation of cells at 37 degrees C for various times. Heat treatment resulted in in vivo association of the nucleoids with cellular protein and in an increase in sedimentation coefficient. During incubation at 37 degrees C, a fraction of the nucleoids, from heated cells, because dissociated from cellular protein and regained their characteristic sedimentation coefficients. The percentage of nucleoids which returned to their control sedimentation position in the sucrose gradients corresponded to the percentage of cells able to repair thermal damage as assayed by enumeration on agar plates.  相似文献   

11.
XRCC5 (also known as Ku80) is a component of the DNA-dependent protein kinase (DNA-PK), existing as a heterodimer with G22P1 (also known as Ku70). DNA-PK is involved in the nonhomologous end-joining (NHEJ) pathway of DNA double-strand break (DSB) repair, and kinase activity is dependent upon interaction of the Ku subunits with the resultant DNA ends. Nuclear XRCC5 is normally extractable with non-ionic detergent; it is found in the soluble cytoplasmic fraction after nuclear isolation with Triton X-100. In this study, we found that heating at 45.5 degrees C causes a decreased extractability of XRCC5 from the nuclei of human U-1 melanoma or HeLa cells. Such decreases in extractability are indicative of protein aggregation within nuclei. Recovery of extractability of XRCC5 to that of unheated control cells was observed after incubation at 37 degrees C after heat shock. The decrease in extractability and the kinetics of recovery were dependent on dose, although the decrease in extractability reached a plateau after heating for 15 min or more. Thermotolerant U-1 cells also showed decreased extractability of XRCC5, but to a lesser degree compared to nontolerant cells. When a comparable initial reduction of extractability of XRCC5 was induced in both thermotolerant and nontolerant cells, the kinetics of recovery was nearly identical. The kinetics of recovery of the extractability of XRCC5 was different from that of total nuclear protein in nontolerant cells; recovery of extractability of XRCC5 occurred faster initially and returned to the level in unheated cells faster than total nuclear protein. Similar results were obtained for thermotolerant cells, with differences between the initial recovery of the extractability of XRCC5 and total protein being particularly evident after longer heating times. Heat has been shown to inactivate XRCC5. We speculate that inactivation of XRCC5 after heat shock results from protein aggregation, and that changes in XRCC5 may, in part, lead to inhibition of DSB repair through inactivation of the NHEJ pathway.  相似文献   

12.
1. An [3H]oestradiol-exchange method was developed for the determination of oestradiol-receptor complexes in the nuclear fraction of immature rat testicular tissue. This method permits the determination of nuclear oestradiol-receptor sites in the presence of a relatively large amount of non-specific oestradiol binding present in testicular nuclei. After incubation of nuclei for 60min at 20 degrees C in the presence of [3H]oestradiol with or without a 1000-fold excess of non-radioactive diethylstilboestrol, specific binding can be determined quantitatively in the KCl-extractabe fraction, which contains 40% of the total receptor population. 2. The amount of receptor-bound steroid present in the 0.4m-KCl extract of testicular neclei remained constant during incubation at 20 degrees C. For uterine nuclei incubated with [3H]oestradiol at 37 degrees C a shift of specifically bound [3H]oestradiol occurred from the KCl-soluble fraction to the KCl-insoluble fraction. 3. In intact rat testis, about 20% of the total receptor concentration was present in its nuclear form. Hypophysectomy 5 days before measurement resulted in a twofold decrease in the amount of receptor, which was present mainly in the cytosol. After injection of choriogonadotropin to intact animals, the total receptor concentration increased threefold. 4. This nuclear exchange method might be useful for determination of occupied specific receptor sites in tissues with relatively low contents of specific receptors.  相似文献   

13.
The relationship between hsp 70 localization and heat resistance   总被引:4,自引:0,他引:4  
Using indirect immunofluorescence we have investigated the kinetics of nuclear accumulation and removal of hsp 70 in HA-1 Chinese hamster fibroblasts exposed to elevated temperatures. The kinetics of accumulation of hsp 70 in the nuclei were found to be time/temperature dependent at all temperatures tested (42-45 degrees C). At a given temperature, the fraction of cells manifesting nuclear localization of hsp 70 increased with exposure time. For a given duration of heating, the fraction of cells manifesting nuclear localization of hsp 70 increased with the temperature. The kinetics of the nuclear accumulation of hsp 70 were similar for normal HA-1 cells, their heat-resistant variants, and transiently thermotolerant cells (triggered by prior exposure to a brief heat shock or to sodium arsenite). Upon return to 37 degrees C after heat shock, the kinetics of removal of the hsp 70 associated with the nucleus was dependent on the severity of the initial heat challenge. However, for a given heat dose, the decay of nuclear localization of hsp 70 was more rapid in thermotolerant and heat-resistant cells than in their normal counterparts. These results suggest that the increased levels of hsp 70 associated with the transient or permanently heat-resistant state may play a direct role in restoring and/or repairing heat-induced nuclear and nucleolar alterations associated with heat-induced cell killing. Furthermore, they also suggest that the heat-resistant state may involve ameliorated repair of heat-induced cellular alterations.  相似文献   

14.
A M Traish  R E Muller  H H Wotiz 《Steroids》1985,45(3-4):247-262
We have investigated the binding of cyproterone acetate (CA) to cytosolic androgen receptors (RC) and translocation of the RCCA complex into the nucleus. In a cell-free system (3H)CA binds to cytosolic androgen receptors with high affinity (KD = 11.6 nM) and limited capacity (180-200 femtomoles/mg protein). (3H)CA, however, dissociates very rapidly from the cytosolic and nuclear androgen receptors (Rn) at 0 degree C. Incubation of RC (3H)CA at 20 degrees C increased its ability to bind to nuclei. Translocation of RC (3H)CA to nuclei of intact cells was demonstrated after incubation of prostatic tissue with (3H)CA in tissue culture medium at 37 degrees C. In vivo administration of CA to castrated rats promoted RCCA translocation but did not induce androgen receptor replenishment. These data demonstrate that CA binds to and translocates androgen receptors to nuclei without concomitant receptor replenishment.  相似文献   

15.
Previous studies have resulted in conflicting data regarding the recovery of the nuclear enzymes topoisomerase (topo) II and topo I in the nuclear matrix fraction. In the present study we have assessed the effect of systematically altering a single extraction procedure on the distribution of these enzymes during the subfractionation of nuclei from HTC hepatoma tissue culture cells. When nuclear monolayers (prepared by treating attached cells in situ with the neutral detergent Nonidet-P40 at 4 degrees C) were isolated in the presence of the irreversible sulfhydryl blocking reagent iodoacetamide, subsequent treatment with DNase I and RNase A followed by 1.6 M NaCl resulted in structures which were extensively depleted of intranuclear components as assessed by phase contrast microscopy and conventional transmission electron microscopy. These structures contained 12 +/- 4% of the total protein present in the original nuclear monolayers. The lamins and polypeptides with molecular weights comparable to those of actin and vimentin were the predominant polypeptides present on SDS-polyacrylamide gels. Western blotting revealed that less than 5% of the total nuclear topo II molecules were present in these structures. In contrast, when the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) was substituted for iodoacetamide, the same extraction procedure yielded structures containing components of the nucleolus and an extensive intranuclear network. These structures contained a wide variety of nonlamin, nonhistone nuclear polypeptides including 23 +/- 4% of the total nuclear topo II. SDS-polyacrylamide gel electrophoresis performed under nonreducing conditions revealed that topo II in these nuclear matrices was present as part of a large disulfide cross-linked complex. Treatment of these structures with reducing agents in 1.6 M NaCl released the topo II. In contrast, topo I did not form disulfide cross-linked oligomers and was not detectable in any of these nuclease- and salt-resistant structures prepared at 4 degrees C. To assess the effect of in vitro heat treatment on the distribution of the topoisomerases, nuclear monolayers (isolated in the absence of iodoacetamide and NaTT) were heated to 37 degrees C for 1 h prior to treatment with nucleases and 1.6 M NaCl. The resulting structures (which retained 26 +/- 5% of the total nuclear protein) were morphologically similar to the NaTT-stabilized nuclear matrices and contained 15 +/- 4% of the total nuclear topo II. High-molecular-weight disulfide cross-linked oligomers of topo II were again demonstrated. Attempts to demonstrate these disulfide cross-linked oligomers in intact cells were unsuccessful.  相似文献   

16.
Potentiation of thermal injury in mouse cells by interferon   总被引:1,自引:0,他引:1  
Mouse cells, when exposed to high temperature (43 degrees), shut off overall protein synthesis and continue to synthesize "heat shock proteins". Such heat shocked cells, upon reincubation at 37 degrees C, recover and proliferate. However, when mouse cells are pretreated with mouse interferon (IFN) and then exposed to 43 degrees, more than 99% of the cell population fail to recover. Synthesis of the major heat shock protein is unaffected in cells treated with IFN. Experiments designed to assess the role of intracellular glutathione (GSH) during cells' recovery from hyperthermia indicated that there is an irreversible depletion of glutathione when IFN treated cells are heat shocked. Neither depletion of GSH, nor potentiation of thermal injury was observed in a IFN-resistant line of mouse cells.  相似文献   

17.
J F Watkins  M J Smerdon 《Biochemistry》1985,24(25):7279-7287
We have investigated the salt- and temperature-induced rearrangement of nucleosomes in both intact and H1-depleted nuclei from human cells. In agreement with previous reports on the rearrangement of nucleosomes in isolated chromatin or chromatin fragments, we observed a decrease in the average nucleosome repeat length following incubation of nuclei at 37 degrees C in elevated salt concentrations. However, this decrease occurred in two distinct phases. First, incubation of H1-depleted nuclei at 37 degrees C for as little as 10 min in low-salt, isotonic buffer (containing 0.025 M KCl) resulted in a shift in the limiting repeat value from approximately 190 to 168 base pairs (bp). A similar shift was observed for intact nuclei incubated at 37 degrees C for 1 h in buffer containing near-physiological salt concentrations (i.e., 0.175 M KCl). This limiting repeat value was maintained in both intact and H1-depleted nuclei up to a salt concentration of 0.45 M KCl in the incubation buffer. Second, at salt concentrations of 0.625 M KCl, a limiting repeat of approximately 146 bp was obtained, and the nuclei had clearly lysed. During the first shift in repeat length, little additional exchange of nuclear proteins occurred compared to nuclei kept on ice in a low-salt buffer. This was the case even though the conditions used to monitor exchange were optimized by using a high DNA to chromatin ratio. On the other hand, a significant increase in the exchange of nuclear proteins, and formation of nucleosomes on the naked DNA, was observed during the shift in repeat length to 146 bp.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix   总被引:1,自引:0,他引:1  
Nuclear matrix, a key structure in the nuclear framework, appears to be a particularly responsive target during heat shock treatment of cells. We have previously shown that nuclear matrix is a preferential target for protein kinase CK2 signaling in the nucleus. The levels of CK2 in the nuclear matrix undergo dynamic changes in response to altered growth status in the cell. Here, we have demonstrated that CK2 targeting to the nuclear matrix is profoundly influenced by treatment of the cells to temperatures higher than 37 degrees C. Rapid increase in the nuclear matrix association of CK2 is observed when cells are placed at temperatures of 41 and 45 degrees C. This effect at 45 degrees C was higher than at 41 degrees C, and was time-dependent. Also, different cell lines behaved in a qualitatively similar manner though the quantitative responses differed. The modulations in the nuclear matrix associated CK2 in response to heat shock appear to be due to trafficking of the enzyme between cytosolic and nuclear compartments. In addition, it was noted that isolated nuclei subjected to heat shock also responded by a shuttling of the intrinsic CK2 to the nuclear matrix compartment. These results suggest that modulations in CK2 in the nuclear compartment in response to the heat stress occur not only by a translocation of the enzyme from the cytoplasmic compartment to the nuclear compartment, but also that there is a redistribution of the kinase within the nuclear compartment resulting in a preferential association with the nuclear matrix. The results support the notion that CK2 association with the nuclear matrix in response to heat shock may serve a protective role in the cell response to stress.  相似文献   

19.
20.
A novel and rapid procedure is described for the preparation of chromatin-depleted nuclei (CDN) from Friend erythroleukemia cells under conditions that avoid the use of high salt concentrations. By this procedure isolated nuclei that had previously been incubated with DNase I to partially digest DNA were washed twice in 2 mM EDTA to extract the chromatin. The resulting structures contained 1% of DNA, 65% of total RNA, 60-80% of hnRNA, 74% of snRNA, 29% of protein, and 2% of histones contained in isolated nuclei. Electron microscopy revealed intact, spherical structures similar in diameter to isolated nuclei and consisting of dense networks of fibrils 50-100 A thick surrounded by distinct nuclear laminae. Although no morphological evidence was found for residual nucleoli, C23, a nucleolus-specific phospho-protein, remained centrally localized in CDN, while Sm antigen specific for snRNPs was diffusely localized but absent from central regions. Addition of 2 mM MgCl2 to CDN resulted in the reformation of morphologically distinguishable residual nucleoli. These studies suggest that nucleolar morphology is, in part, dependent upon divalent cations and components unique to the nucleolar matrix and demonstrate that little randomization of nuclear and nucleolar matrix fibrils occurs during CDN isolation in the absence of divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号