首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The serine protease urokinase-type plasminogen activator (uPA), its inhibitor PAI-1, and its cellular receptor uPA-R (CD87) are of crucial importance during cellular invasion and migration, required for a variety of physio- and pathophysiological processes. It has become increasingly evident in recent years that the uPA/uPA-R-system has far more functional properties than plasminogen activation alone. This is reflected by its involvement in cellular events such as proliferation, adhesion, migration, and chemotaxis. Since uPA-R lacks a transmembrane domain and thus on its own is not capable of transmitting signals into cells, association and functional cooperation with other signaling molecules/receptors is needed. In this respect, one group of adhesion and signaling receptors, the integrins, have been identified which constitute, together with the uPA/uPA-R-system, an interdependent biological network by which the uPA/uPA-R-system broadly affects integrin functions and vice versa. Moreover, there is a growing body of evidence that cellular uPA, uPA-R, and PAI-1 expression is under control of specific ECM/integrin interactions and also that integrins are regulated by components of the uPA/uPA-R-system. By this multifaceted crosstalk, cells may modulate their proteolytic, adhesive, and migratory activities and monitor ECM integrity in their microenvironment.  相似文献   

2.
3.
It is assumed that plasmin participates in pericellular proteolysis in the epidermis. Plasmin is generated by keratinocyte-associated plasminogen activators from the proenzyme plasminogen; plasminogen activation can proceed at the keratinocyte surface. The resultant plasmin interferes with cell to matrix adhesion and does possibly contribute to keratinocyte migration during reepithelialization. Here we describe the receptor for urokinase-type plasminogen activator (uPA-R) in the human keratinocyte cell line HaCaT, which serves to direct plasminogen activation to the cell surface; we relate the receptor to the uPA-R previously described in human myclo-/monocytes. Binding of uPA to the receptor accelerated plasminogen activation by a factor of ≈10, compared to uPA in solution. Receptor-bound uPA was susceptible to inhibition by the plasminogen activator inhibitors 1 and 2. uPA and uPA-R antigen, as well as uPA activity, were localized to the leading front of expanding sheets of HaCaT cells. Exposure of HaCaT cells to plasminogen was followed by detachment of the cells. Detachment was prevented by an anti-catalytic anti-uPA antibody, by the plasmin-specific inhibitor aprotinin, and by the lysine analogue tranexamic acid, the latter of which prevents plasmin(ogen) binding to the cell surface. Our findings support the hypothesis that uPA-mediated plasminogen activation is characteristic of mobile rather than sessile keratinocytes. Moreover, the uPA-R seems to focalize plasminogen activation to the surface of cells at the site of keratinocyte migration.  相似文献   

4.
Cellular invasion of extracellular matrix (ECM) occurs during normal and pathological settings. For cells to invade, they must adhere to the underlying substratum, break down barrier molecules, and detach from the substratum prior to migrating through the ECM. We previously demonstrated that incubation under reduced oxygen levels increases the in vitro invasiveness of trophoblast and breast carcinoma cells, an effect linked to elevated expression of the cell surface receptor for urokinase-type plasminogen activator (uPAR). This study examined the role of oxygen, integrins and the urokinase-type plasminogen activator (uPA) system on the adhesion of trophoblast and breast carcinoma cells to the ECM molecules vitronectin and fibronectin. Compared to exposure to 20 and 5% oxygen, exposure to 1% oxygen decreased adhesion of these cells to vitronectin and fibronectin, an effect that was reversible by re-exposure to 20% oxygen. Incubation in 1% oxygen also resulted in reduced expression of surface alpha(5) integrin. Furthermore, adhesion to vitronectin and fibronectin was reduced by compounds that interfere with integrin function, such as EDTA, anti-integrin antibodies, or by antibodies that interfere with the binding of pro-uPA to uPAR, soluble uPAR, soluble vitronectin, phosphatidylinositol-specific phospholipase C, as well as plasminogen activator inhibitor-1. These findings suggest an important role for oxygen in the regulation of cellular invasion, possibly in part through its effects on integrin and uPAR-mediated mechanisms of adhesion.  相似文献   

5.
Expression of urinary-type plasminogen activator (uPA) and its receptor (uPAR) is correlated with matrix proteolysis, cell adhesion, motility, and invasion. To evaluate the functional link between adhesion and proteolysis in gingival keratinocytes (pp126), cells were treated with immobilized integrin antibodies to induce integrin clustering. Clustering of alpha(3) and beta(1) integrin subunits, but not alpha(2), alpha(5), alpha(6), or beta(4), enhanced uPA secretion. Bead-immobilized laminin-5 and collagen I, two major alpha(3)beta(1) ligands, also induced uPA expression. Coordinate regulation of the serpin plasminogen activator inhibitor 1 was also apparent; however, a net increase in uPA activity was predominant. alpha(3)beta(1) integrin clustering induced extracellular signal-regulated kinase 1/2 phosphorylation, and both uPA induction and extracellular signal-regulated kinase activation were blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059. Integrin aggregation also promoted a dramatic redistribution of uPAR on the cell surface to sites of clustered alpha(3)beta(1) integrins. Co-immunoprecipitation of beta(1) integrin with uPAR provided further evidence that protein-protein interactions between uPAR and beta(1) integrin control uPAR distribution. As a functional consequence of uPA up-regulation and uPA-mediated plasminogen activation, the globular domain of the laminin-5 alpha(3) subunit, a major pp126 matrix protein, was proteolytically processed from a 190-kDa form to a 160-kDa species. Laminin-5 containing the 160-kDa alpha(3) subunit efficiently nucleates hemidesmosome formation and reduces cell motility. Together, these data suggest that multivalent aggregation of the alpha(3)beta(1) integrin regulates proteinase expression, matrix proteolysis, and subsequent cellular behavior.  相似文献   

6.
Interaction between the extracellular matrix and integrin receptors on cell surfaces leads not only to cell adhesion but also to intracellular signaling events that affect cell migration, proliferation, and survival. The vitronectin receptor alpha(v)beta(3) integrin is of key importance in glioma cell biology. The expression of urokinase-type plasminogen activator receptor (uPAR) was recently shown to co-regulate with the expression of alpha(v)beta(3) integrin. Moreover, restoration of the p16 protein in glioma cells inhibits the alpha(v)beta(3) integrin-mediated spreading of those cells on vitronectin. Thus we hypothesized that adenovirus-mediated down-regulation of uPAR and overexpression of p16 might down-regulate the expression of alpha(v)beta(3) integrin and the integrin-mediated signaling in glioma cells, thereby defeating the malignant phenotype. In this study, we used replication-deficient adenovirus vectors that contain either a uPAR antisense expression cassette (Ad-uPAR) or wild-type p16 cDNA (Ad-p16) and a bicistronic adenovirus construct in which both the uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16) are inserted in the E1-deleted region of the vector. Infecting the malignant glioma cell line SNB19 with Ad-uPAR, Ad-p16, or Ad-uPAR/p16 in the presence of vitronectin resulted in decreased alpha(v)beta(3) integrin expression and integrin-mediated biological effects, including adhesion, migration, proliferation, and survival Our results support the therapeutic potential of simultaneously targeting uPAR and p16 in the treatment of gliomas.  相似文献   

7.
Keratinocytes synthesize and secrete urokinase-type plasminogen activator (uPA) which is bound in an autocrine manner to a specific receptor (uPA-R) at the keratinocyte surface. Plasminogen that is also bound to specific membrane binding sites is readily activated by uPA-R-bound uPA. Thus, plasmin is provided for proteolysis of pericellular glycoproteins. The expression of uPA and the uPA-R is confined to migrating keratinocytes during epidermal wound healing, rather than to keratinocytes of the normal epidermis. The regulatory factors of uPA/uPA-R expression in keratinocytes remained largely elusive. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β), are present in epidermal wounds. We have therefore tested IL-1β and TNF-α for their influence on surface-associated plasminogen activation in a human keratinocyte cell line (HaCaT) as well as in primary cultures of normal human epidermal keratinocytes. Both cytokines induced the secretion of uPA into the culture supernatants and a concomitant increase in uPA activity as well as in uPA and uPA-R antigen at the cell surface. The increase was preceded by an increase in specific mRNA. The induction was accompanied by an accelerated uPA-dependent and plasmin-mediated detachment of HaCaT cells from the culture substratum. Taken together, the proinflammatory cytokines IL-1β and TNF-α induced a coordinated increase in uPA and uPA-R as well as increased pericellular plasmin-mediated proteolysis in human epidermal keratinocytes. This function might be an element of the molecular cell biological events during epidermal wound healing.  相似文献   

8.
During human prostate cancer progression, the integrin alpha6beta1 (laminin receptor) is expressed on the cancer cell surface during invasion and in lymph node metastases. We previously identified a novel structural variant of the alpha6 integrin called alpha6p. This variant was produced on the cell surface and was missing the beta-barrel extracellular domain. Using several different concentrations of amiloride, aminobenzamidine and PAI-1 and the urokinase-type plasminogen activator (uPA) function-blocking antibody (3689), we showed that uPA, acting as a protease, is responsible for production of alpha6p. We also showed that addition of uPA in the culture media of cells that do not produce alpha6p, resulted in a dose-dependent alpha6p production. In contrast, the addition of uPA did not result in the cleavage of other integrins. Using alpha2-antiplasmin and plasmin depleted media, we observed that uPA cleaves the alpha6 integrin directly. Further, 12-o-tetradecanoyl-phorbol-13-acetate (TPA) induced the production of alpha6p, and this induction was abolished by PAI-1 but not alpha2-antiplasmin. Finally, the alpha6p integrin variant was detected in invasive human prostate carcinoma tissue indicating that this is not a tissue culture phenomenon. These data, taken together, suggest that this is a novel function of uPA, that is, to remove the beta-barrel ligand-binding domain of the integrin while preserving its heterodimer association.  相似文献   

9.
Keratinocytes synthesize and secrete urokinase-type plasminogen activator (uPA), which is bound in an autocrine manner to a specific receptor (uPA-R, CD87) at their surface. Plasminogen, which is also bound to membrane binding sites, is readily activated by uPA-R-bound uPA. Thus, plasmin for proteolysis of pericullular glycoproteins is provided. While uPA-R and uPA are at low to undetectable levels in keratinocytes of the normal epidermis, both compounds are upregulated in migrating keratinocytes during reepithelialization of epidermal defects and in affected keratinocytes of various epidermal disorders, including bullous dermatoses. We have hypothesized that the disturbance of cell/matrix interactions—a common feature of these diverse pathological situations—induces uPA/uPA-R. Accordingly, we explored whether the dispase-mediated detachment of cultured keratinocytes, which have formed a multilayered epidermis-like structurein vitro,induced uPA and uPA-R. We found increases in uPA secretion, cell-associated uPA activity, and uPA- and uPA-R-antigen in keratinocytes upon dispase-mediated detachment from their growth substratum. The increase was preceded by an increase in uPA-R- and uPA-specific mRNA, which was not observed when the proteinase inhibitor phosphoramidon was added together with dispase. In conclusion, we present evidence that experimental detachment with dispase provides signals for the concomitant upregulation of uPA-R and uPA. The findings support the hypothesis that cell/matrix interactions may influence the expression of the cell surface-associated PA system in human keratinocytes.  相似文献   

10.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR/CD87) regulates cellular adhesion, migration, and tumor cell invasion. However, it is unclear how glycosyl phosphatidylinositol-anchored uPAR, which lacks a transmembrane structure, mediates signal transduction. It has been proposed that uPAR forms cis-interactions with integrins as an associated protein and thereby transduces proliferative or migratory signals to cells upon binding of uPA. We provide evidence that soluble uPAR (suPAR) specifically binds to integrins alpha4beta1, alpha6beta1, alpha9beta1, and alphavbeta3 on Chinese hamster ovary cells in a cation-dependent manner. Anti-integrin and anti-uPAR antibodies effectively block binding of suPAR to these integrins. Binding of suPAR to alpha4beta1 and alphavbeta3 is blocked by known soluble ligands and by the integrin mutations that inhibit ligand binding. These results suggest that uPAR is an integrin ligand rather than, or in addition to, an integrin-associated protein. In addition, we demonstrate that glycosyl phosphatidylinositol-anchored uPAR on the cell surface specifically binds to integrins on the apposing cells, suggesting that uPAR-integrin interaction may mediate cell-cell interaction (trans-interaction). These previously unrecognized uPAR-integrin interactions may allow uPAR to transduce signals through the engaged integrin without a hypothetical transmembrane adapter and may provide a potential therapeutic target for control of inflammation and cancer.  相似文献   

11.
The multifunctional mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a tumor suppressor. We report here that RNA interference with M6P/IGF2R expression in urokinase-type plasminogen activator (uPA)/urokinase-type plasminogen activator receptor (uPAR) expressing human cancer and endothelial cells resulted in increased pericellular plasminogen activation, cell adhesion, and higher invasive potential through matrigel. M6P/IGF2R silencing led also to the cell surface accumulation of urokinase and plasminogen and enhanced expression of αV integrins. Genetic rescue experiments and inhibitor studies revealed that the enhanced plasminogen activation was due to a direct effect of M6P/IGF2R on uPAR, whereas increased cell adhesion to vitronectin was dependent on αV integrin expression and not uPAR. Increased cell invasion of M6P/IGF2R knockdown cells was rescued by cosilencing both uPAR and αV integrin. Furthermore, we found that M6P/IGF2R expression accelerates the cleavage of uPAR. M6P/IGF2R silencing resulted in an increased ratio of full-length uPAR to the truncated D2D3 fragment, incapable of binding most uPAR ligands. We conclude that M6P/IGF2R controls cell invasion by regulating αV integrin expression and by accelerating uPAR cleavage, leading to the loss of the urokinase/vitronectin/integrin-binding site on uPAR.  相似文献   

12.
Urokinase-type plasminogen activator (uPA) binding to uPAR induces migration, adhesion, and proliferation through multiple interactions with G proteins-coupled receptor FPRL1, integrins, or the epidermal growth factor (EGF) receptor (EGFR). At least two forms of uPAR are present on the cell surface: full-length and cleaved uPAR, each specifically interacting with one or more transmembrane proteins. The connection between these interactions and the effects on the signaling pathways activation is not clear. We have exploited an uPAR mutant (hcr, human cleavage resistant) to dissect the pathways involved in uPA-induced cell migration. This mutant is not cleaved by proteases, is glycosylphosphatidylinositol anchored, and binds uPA with a normal K(d). Both wild-type (wt) and hcr-uPAR are able to mediate uPA-induced migration, are constitutively associated with the EGFR, and associate with alpha3beta1 integrin upon uPA binding. However, they engage different pathways in response to uPA. wt-uPAR requires both integrins and FPRL1 to mediate uPA-induced migration, and association of wt-uPAR to alpha3beta1 results in uPAR cleavage and extracellular signal-regulated kinase (ERK) activation. On the contrary, hcr-uPAR does not activate ERK and does not engage FPRL1 or any other G protein-coupled receptor, but it activates an alternative pathway initiated by the formation of a triple complex (uPAR-alpha3beta1-EGFR) and resulting in the autotyrosine phosphorylation of EGFR.  相似文献   

13.
Vitronectin is a plasma protein which can deposit into the extracellular matrix where it supports integrin and uPA dependent cell migration. In earlier studies, we have shown that the plasma protein, vitronectin, stimulates focal adhesion remodeling by recruiting urokinase-type plasminogen activator (uPA) to focal adhesion sites [Wilcox-Adelman, S. A., Wilkins-Port, C. E., McKeown-Longo, P. J., 2000. Localization of urokinase-type plasminogen activator to focal adhesions requires ligation of vitronectin integrin receptors. Cell. Adhes. Commun.7, 477-490]. In the present study, we used a variety of vitronectin constructs to demonstrate that the localization of uPA to adhesion sites requires the binding of both vitronectin integrin receptors and the uPA receptor (uPAR) to vitronectin. A recombinant fragment of vitronectin containing the connecting sequence (VN(CS)) was able to support integrin-dependent adhesion, spreading and focal adhesion assembly by human microvessel endothelial cells. Cells adherent to this fragment were not able to localize uPA to focal adhesions. A second recombinant fragment containing both the amino-terminal SMB domain and the CS domain was able to restore the localization of uPA to adhesion sites. This fragment, which contains a uPAR binding site, also resulted in the localization of uPAR to adhesion sites. uPAR blocking antibodies as well as phospholipase C treatment of cells inhibited uPA localization to adhesion sites confirming a role for uPAR in this process. The SMB domain alone was unable to direct either uPAR or uPA to adhesion sites in the absence of the CS domain. Our results indicate that vitronectin-dependent localization of uPA to adhesion sites requires the sequential binding of vitronectin integrins and uPAR to vitronectin.  相似文献   

14.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

15.
The glycosylphosphatidylinositol-linked urokinase-type plasminogen activator receptor (uPAR) interacts with the heterodimer cell adhesion molecules integrins to modulate cell adhesion and migration. Devoid of a cytoplasmic domain, uPAR triggers intracellular signaling via its associated molecules that contain cytoplasmic domains. Interestingly, uPAR changes the ectodomain conformation of one of its partner molecules, integrin alpha(5)beta(1), and elicits cytoplasmic signaling. The separation or reorientation of integrin transmembrane domains and cytoplasmic tails are required for integrin outside-in signaling. However, there is a lack of direct evidence showing these conformational changes of an integrin that interacts with uPAR. In this investigation we used reporter monoclonal antibodies and fluorescence resonance energy transfer analyses to show conformational changes in the alpha(M)beta(2) headpiece and reorientation of its transmembrane domains when alpha(M)beta(2) interacts with uPAR.  相似文献   

16.
The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored cellular receptor (uPAR) promotes plasminogen activation and the efficient generation of pericellular proteolytic activity. We demonstrate here that expression of the tetraspanin CD82/KAI1 (a tumor metastasis suppressor) leads to a profound effect on uPAR function. Pericellular plasminogen activation was reduced by approximately 50-fold in the presence of CD82, although levels of components of the plasminogen activation system were unchanged. uPAR was present on the cell surface and molecularly intact, but radioligand binding analysis with uPA and anti-uPAR antibodies revealed that it was in a previously undetected cryptic form unable to bind uPA. This was not due to direct interactions between uPAR and CD82, as they neither co-localized on the cell surface nor could be co-immunoprecipitated. However, expression of CD82 led to a redistribution of uPAR to focal adhesions, where it was shown by double immunofluorescence labeling to co-localize with the integrin alpha(5)beta(1), which was also redistributed in the presence of CD82. Co-immunoprecipitation experiments showed that, in the presence of CD82, uPAR preferentially formed stable associations with alpha(5)beta(1), but not with a variety of other integrins, including alpha(3)beta(1). These data suggest that CD82 inhibits the proteolytic function of uPAR indirectly, directing uPAR and alpha(5)beta(1) to focal adhesions and promoting their association with a resultant loss of uPA binding. This represents a novel mechanism whereby tetraspanins, integrins, and uPAR, systems involved in cell adhesion and migration, cooperate to regulate pericellular proteolytic activity and may suggest a mechanism for the tumor-suppressive effects of CD82/KAI1.  相似文献   

17.
Previous studies have shown that the adhesion protein, vitronectin, directs the localization of urokinase-type plasminogen activator (uPA) to areas of cell-substrate adhesion, where uPA is thought to regulate cell migration as well as pericellular proteolysis. In the present study, HT-1080 cell lines expressing either wild-type vitronectin or vitronectin containing a single amino-acid substitution in the integrin binding domain were used to assess whether ligation of the alphavbeta5 integrin was required for uPA localization to focal adhesions. The synthesis of wild-type vitronectin by HT-1080 cells adherent to either collagen or fibronectin resulted in the redistribution of both the alphavbeta5 integrin as well as uPA to focal adhesion structures. In contrast, cells synthesizing mutant vitronectin, containing the amino-acid substitution in the integrin binding domain, were unable to direct the redistribution of either alphavbeta5 or uPA to focal adhesions. Recombinant forms of wild-type and mutant vitronectin were prepared in a baculovirus system and compared for their ability to direct the redistribution of vitronectin integrin receptors as well as uPA on human skin fibroblasts. In the absence of vitronectin, fibroblast cells adherent to fibronectin assemble focal adhesions which contain the beta1 integrin but do not contain uPA. Addition of recombinant wild-type, but not mutant, vitronectin to fibroblasts adherent to fibronectin resulted in the redistribution of alphavbeta3, alphavbeta5, and uPA into focal adhesions. However, when cells were plated directly onto antibodies directed against either the alphavbeta3 or alphavbeta5 integrins, uPA was not localized on the cell surface. These data indicate that ligation of vitronectin integrin receptors is necessary but not sufficient for the localization of uPA to areas of cell matrix adhesion, and suggest that vitronectin may promote cell migration by recruiting vitronectin integrin receptors and components of the plasminogen activator system to areas of cell matrix contact.  相似文献   

18.
19.
The cysteine-rich somatomedin B domain (SMB) of the matrix protein vitronectin is involved in several important biological processes. First, it stabilizes the active conformation of the plasminogen activator inhibitor (PAI-1); second, it provides the recognition motif for cell adhesion via the cognate integrins (alpha(v)beta(3), alpha(v)beta(5), and alpha(IIb)beta(3)); and third, it binds the complex between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR). Previous structural studies on SMB have used recombinant protein expressed in Escherichia coli or SMB released from plasma-derived vitronectin by CNBr cleavage. However, different disulfide patterns and three-dimensional structures for SMB were reported. In the present study, we have expressed recombinant human SMB by two different eukaryotic expression systems, Pichia pastoris and Drosophila melanogaster S2-cells, both yielding structurally and functionally homogeneous protein preparations. Importantly, the entire population of our purified, recombinant SMB has a solvent exposure, both as a free domain and in complex with PAI-1, which is indistinguishable from that of plasma-derived SMB as assessed by amide hydrogen ((1)H/(2)H) exchange. This solvent exposure was only reproduced by one of three synthetic SMB products with predefined disulfide connectivities corresponding to those published previously. Furthermore, this connectivity was also the only one to yield a folded and functional domain. The NMR structure was determined for free SMB produced by Pichia and is largely consistent with that solved by X-ray crystallography for SMB in complex with PAI-1.  相似文献   

20.
The dystrophin-glycoprotein complex and the alpha7beta1 integrin are trans-sarcolemmal linkage systems that connect and transduce contractile forces between muscle fibers and the extracellular matrix. alpha7beta1 is the major laminin binding integrin in skeletal muscle. Different functional variants of this integrin are generated by alternative splicing and post-translational modifications such as glycosylation and ADP-ribosylation. Here we report a species-specific difference in alpha7 chains that results from an intra-peptide proteolytic cleavage, by a serine protease, at the 603RRQ605 site. Site-directed mutagenesis of RRQ to GRQ prevents this cleavage. This RRQ sequence in the alpha7 integrin chain is highly conserved among vertebrates but it is absent in mice. Protein structure modeling indicates this cleavage site is located in an open region between the beta-propeller and thigh domains of the alpha7 chain. Compared with the non-cleavable alpha7 chain, the cleaved form enhances cell adhesion and spreading on laminin. Cleavage of the alpha7 chain is elevated upon myogenic differentiation, and this cleavage may be mediated by urokinase-type plasminogen activator. These results suggest proteolytic cleavage is a novel mechanism that regulates alpha7 integrin functions in skeletal muscle, and that the generation of such cleavage sites is another evolutionary mechanism for expanding and modifying protein functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号