首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two cluster (4Fe-4S) ferredoxin and a rubredoxin have been isolated from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Their amino acid compositions are reported and compared to those of other iron-sulfur proteins. The ferredoxin contains 8 cysteine residues, 8 atoms of iron and 8 atoms of labile sulfur per molecule; its minimum molecular weight is 6163. The protein exhibits an abosrbance ratio of A385/A283 = 0.74. Storage results in a bleaching of the chromophore; the denatured ferredoxin is reconstitutable with iron and sulfide. The instability temperature is 52 degrees C. The rubredoxin does not differ markedly from rubredoxins from other anaerobic bacteria.  相似文献   

2.
Iron is an essential element for almost all living organisms. The possible role of iron for growth, adherence and cytotoxicity of Entamoeba histolytica was evaluated in this study. The absence of iron from TYI-S-33 medium stopped amebic growth in vitro. However, iron concentrations in the culture media of 21.4-285.6 microM did not affect the growth of the amebae. Although growth was not retarded at these concentrations, the adhesive abilities of E. histolytica and their cytotoxicities to CHO cell monolayer were correlated with iron concentration. Amebic adhesion to CHO cell monolayers was significantly reduced by low-iron (24.6 +/- 2.1%) compared with 62.7 +/- 2.8 and 63.1 +/- 1.4% of amebae grown in a normal-iron and high-iron media, respectively. E. histolytica cultured in the normal- and high-iron media destroyed 69.1 +/- 4.3% and 72.6 +/- 5.7% of cultured CHO cell monolayers, but amebae grown in the low-iron medium showed a significantly reduced level of cytotoxicity to CHO cells (2.8 +/- 0.2%). Addition of divalent cations other than iron to amebic trophozoites grown in the low-iron medium failed to restore levels of the cytotoxicity. However, when E. histolytica grown in low-iron medium were transferred to normal-iron medium, the amebae showed completely restored cytotoxicity within 7 days. The result suggests that iron is an important factor in the adherence and cytotoxicity of E. histolytica to CHO cell monolayer.  相似文献   

3.
A two cluster (4Fe4S) ferredoxin and a rubredoxin have been isolated from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Their amino acid compositions are reported and compared to those of other iron-sulfur proteins.The ferredoxin contains 8 cysteine residues, 8 atoms of iron and 8 atoms of labile sulfur per molecule; its minimum molecular weight is 6163. The protein exhibits an absorbance ratio of A385A283 = 0.74. Storage results in a bleaching of the chromophore; the denatured ferredoxin is reconstitutable with iron and sulfide. The instability temperature is 52°C.The rubredoxin does not differ markedly from rubredoxins from other anaerobic bacteria.  相似文献   

4.
Quantification of the iron nutritional status of phytoplankton is of great interest not only for the study of the oceans but also for fresh waters. Flavodoxin is a small flavoprotein proposed as a molecular marker for iron stress, since it is induced as a consequence of iron deprivation, replacing the iron-sulphur protein ferredoxin. Flavodoxin and ferredoxin from Scenedesmus vacuolatus have been immunoquantified in cells grown under different iron nutritional conditions. Flavodoxin and ferredoxin levels correlate with the iron availability, and the calculated flavodoxin index can be used as an iron-stress marker. Other physiological parameters such as copper deficiency, heterotrophic or mixotrophic growth, nitrogen source and salt stress were also tested as potential factors influencing flavodoxin expression. Salt stress and heterotrophic growth conditions alter flavodoxin and ferredoxin expression. Once flavodoxin expression is repressed by iron (and severe deficiency alleviated), S.vacuolatus still increases its ferredoxin from 0·5 to 1·6 mol of ferredoxin per mole of ferredoxin-NADP+ reductase, and this ratio can be used for the evaluation of mild deficiency.  相似文献   

5.
Complete amino acid sequences of ferredoxin and rubredoxin from Butyribacterium methylotrophicum, a methylotrophic hetero-acetogen, were determined by combination of protease digestion, Edman degradation, carboxypeptidase digestion, and/or partial acid hydrolysis. The ferredoxin was composed of 55 amino acids with a molecular weight of 5,732 excluding iron and sulfur atoms and showed a typical 2[4Fe-4S]-type ferredoxin sequence with an internal repeat at the 14-23 and 42-51 positions. The rubredoxin was composed of 53 amino acids with a molecular weight of 5,672 excluding iron atom and showed a sequence similar to those of other anaerobic rubredoxins. The sequences were compared to those of corresponding proteins from six different bacteria to construct phylogenetic trees, which showed essentially the same topology. The relationships between the ferredoxin sequences from this bacterium and those of Clostridium thermoaceticum and Methanosarcina barkeri, both of which possess a carbonyl-dependent acetyl-CoA metabolic system, are also discussed.  相似文献   

6.
Carbon monoxide dehydrogenase from Clostridium thermoaceticum has been purified to homogeneity using a strict anaerobic procedure. The enzyme has a molecular weight of about 440,000 and it consists of three each of two different subunits giving the composition alpha 3 beta 3. The molecular weight of the alpha-subunit is 78,000 and that of the beta-subunit is 71,000. Pore limit gel electrophoresis gave a molecular weight of 161,000 indicating that the enzyme dissociates to form a dimer with an alpha beta structure. The dimer apparently contains per mol 2 nickel, 1 zinc, 11 iron, and 14 acid-labile sulfur. The anaerobic enzyme has an iron-sulfur type spectrum, which is changed in the presence of the substrate, CO. In the presence of oxygen, which destroys the activity or CO2, the spectrum is that of a typical iron-sulfur protein. Under acidic conditions a low molecular weight nickel factor separates from the enzyme. Viologens, methylene blue, ferredoxin, flavodoxin, and rubredoxin serve as electron acceptors. Of these rubredoxin is by far the most efficient. The enzyme has a pH optimum around 8.4. At this pH and 50 degrees C under 100% CO atmosphere, the apparent Km for methyl viologen is 3.03 mM and Vmax is 750 mumols of CO oxidized min-1 mg-1. Cyanide and methyl iodide inhibit the enzyme. CO reverses the cyanide inhibition but promotes the reaction with methyl iodide. The pure enzyme has no hydrogenase or formate dehydrogenase activity.  相似文献   

7.
The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.  相似文献   

8.
Different electron carriers of the non-desulfoviridin-containing, sulfate-reducing bacterium Desulfovibrio desulfuricans (Norway strain) have been studied. Two nonheme iron proteins, ferredoxin and rubredoxin, have been purified. This ferredoxin contains four atoms of non-heme iron and acid-labile sulfur and six residues of cysteine per molecule. Its amino acid composition suggests that it is homologous with the other Desulfovibrio ferredoxins. The rubredoxin is also an acidic protein of 6,000 molecular weight and contains one atom of iron and four cysteine residues per molecule. The amino acid composition and molecular weight of the cytochrome c3 from D. desulfuricans (strain Norway 4) are reported. Its spectral properties are very similar to those of the other cytochromes c3 (molecular weight, 13,000) of Desulfovibrio and show that it contains four hemes per molecule. This cytochrome has a very low redox potential and acts as a carrier in the coupling of hydrogenase and thiosulfate reductase in extracts of Desulfovibrio gigas and Desulfovibrio desulfuricans (Norway strain) in contrast to D. gigas cytochrome c3 (molecular weight, 13,000). A comparison of the activities of the cytochrome c3 (molecular weight, 13,000) of D. gigas and that of D. desulfuricans in this reaction suggests that these homologous proteins can have different specificity in the electron transfer chain of these bacteria.  相似文献   

9.
A new non-heme iron protein from the periplasmic fraction of Desulfovibrio vulgaris (Hildenbourough NCIB 8303) has been purified to homogeneity, and its amino acid composition, molecular weight, redox potential, iron content, and optical, EPR, and M?ssbauer spectroscopic properties have been determined. This new protein is composed of two identical subunits with subunit molecular weight of 21,900 and contains four iron atoms per molecule. The as-purified oxidized protein exhibits an optical spectrum with absorption maxima at 492, 365, and 280 nm, and its EPR spectrum shows resonances at g = 4.3 and 9.4, characteristic of oxidized rubredoxin. The M?ssbauer data indicate the presence of approximately equal amounts of two types of iron; we named them the Rd-like and the Hr-like iron due to their similarity to the iron centers of rubredoxins (Rds) and hemerythrins (Hrs), respectively. For the Rd-like iron, the measured fine and hyperfine parameters (D = 1.5 cm-1, E/D = 0.26, delta EQ = -0.55 mm/s, delta = 0.27 mm/s, Axx/gn beta n = -16.5 T, Ayy/gn beta n = -15.6 T, and Azz/gn beta n = -17.0 T) are almost identical with those obtained for the rubredoxin from Clostridium pasteurianum. Redox-titration studies monitored by EPR, however, showed that these Rd-like centers have a midpoint redox potential of +230 +/- 10 mV, approximately 250 mV more positive than those reported for rubredoxins. Another unusual feature of this protein is the presence of the Hr-like iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
A ferredoxin and a rubredoxin from Butyribacterium methylotrophicum, which displays a carbonyl-dependent acetyl-coenzyme A synthesis, were purified to electrophoretic homogeneity. The two electron carriers showed absorption spectra similar to those in Clostridium species. The ferredoxin displayed absorption peaks at 280 and 391 nm, while rubredoxin displayed absorption peaks at 279, 382, and 482 nm. Minimum molecular weights calculated from the respective amino acid compositions were 5,727 for ferredoxin and 5,488 for rubredoxin, excluding iron and inorganic sulfur atoms. Both electron carriers were isolated as monomers, according to gel-filtration data. Electron spin resonance analysis revealed that the ferredoxin was a 2[4Fe-4S]-type and that both clusters had a midpoint redox potential value of -410 mV, whereas rubredoxin contained one acid-stable iron and had a redox value of -40 mV. The coupling of these electron carriers to hydrogenase and carbon monoxide dehydrogenase activities was investigated. Rubredoxin showed higher activity towards carbon monoxide dehydrogenase, whereas ferredoxin showed higher activity towards hydrogenase.  相似文献   

12.
Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 +/- 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85 degrees C using hydrogen peroxide with reduced P. furiosus rubredoxin as the electron donor. The specific activity was 36 micromol of rubredoxin oxidized/min/mg with apparent K(m) values of 35 and 70 microM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and P. furiosus NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 micromol of H(2)O(2) reduced/min/mg of rubrerythrin at 85 degrees C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in Escherichia coli grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the E. coli growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content. P. furiosus rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species.  相似文献   

13.
The presence, concentration and distribution of the iron regulated proteins, ferredoxin and flavodoxin, was investigated in pack ice off eastern Antarctica using SDS-PAGE gels. Bands corresponding to ferredoxin and/or flavodoxin were observed in all but eight of the 102 core sections analysed. Flavodoxin was found in most of the ice samples and was strongly correlated with chlorophyll a standing stock. The widespread distribution of flavodoxin here is not thought to indicate iron-limitation as many of the dominant species, such as Fragilariopsis cylindrus, Cylindrotheca closterium, are known to produce this protein under iron-replete conditions and thus the significant correlation between flavodoxin and biomass is likely to be the result of widespread constitutive flavodoxin expression among the diatoms that commonly inhabit sea ice. High concentrations of ferredoxin were predominantly derived from core sections on the floes closest to the continent and also in the upper portion of these floes. There was a consistent lack of ferredoxin expression in the high biomass bottom communities. The absence of ferredoxin is likely to indicate a reduced supply of iron but the significance of this reduced iron supply cannot be inferred on the basis of protein expression alone. Furthermore, in the present study the observed variability in the flavodoxin:ferredoxin ratio may not simply reflect the iron nutritional status of the community, but probably results from changes in the abundance of species capable of expressing ferredoxin.  相似文献   

14.
Iron-dependent formation of ferredoxin and flavodoxin was determined in Anabaena ATCC 29413 and ATCC 29211 by a FPLC procedure. In the first species ferredoxin is replaced by flavodoxin at low iron levels in the vegetative cells only. In the heterocysts from Anabaena ATCC 29151, however, flavodoxin is constitutively formed regardless of the iron supply.Replacement of ferredoxin by flavodoxin had no effect on photosynthetic electron transport, whereas nitrogen fixation was decreased under low iron conditions. As ferredoxin and flavodoxin exhibited the same Km values as electron donors to nitrogenase, an iron-limited synthesis of active nitrogenase was assumed as the reason for inhibited nitrogen fixation. Anabaena ATCC 29211 generally lacks the potential to synthesize flavodoxin. Under iron-starvation conditions, ferredoxin synthesis is limited, with a negative effect on photosynthetic oxygen evolution.  相似文献   

15.
Summary Iron is essential for tumor cell growth. Previous studies have demonstrated that apart from transferrin-bound iron uptake, mammalian cells also possess a transport system capable of efficiently obtaining iron from small molecular weight iron chelates (Sturrock et al., 1990). In the present study, we have examined the ability of tumor cells to grow in the presence of low molecular weight iron chelates of citrate. In chemically defined serum-free medium, most human tumor cell lines required either transferrin (5 μg/ml) or a higher concentration of ferric citrate (500 μM) as an iron source. However, we have also found that from 13 human cell lines tested, 4 were capable of long-term growth in transferrin-free medium with a substantially lower concentration of ferric citrate (5 μM). When grown in medium containing transferrin, both regular and low-iron dependent cell lines use transferrin-bound iron. Growth of both cell types in transferrin medium was inhibited to a certain degree by monoclonal antibody 42/6, which specifically blocks the binding of transferrin to the transferrin receptor. On the contrary, growth of low-iron dependent cell lines in transferrin-free, low-iron medium (5 μM ferric citrate) could not be inhibited by monoclonal antibody 42/6. Furthermore, no autocrine production of transferrin was observed. Low-iron dependent cell lines still remain sensitive to iron depletion as the iron(III) chelator, desferrioxamine, inhibited their growth. We conclude that low-iron dependent tumor cells in transferrin-free, low-iron medium may employ a previously unknown mechanism for uptake of non-transferrin-bound iron that allows them to efficiently use low concentrations of ferric citrate as an iron source. The results are discussed in the context of alternative iron uptake mechanisms to the well-characterized receptor-mediated endocytosis process.  相似文献   

16.
Excretion of the metal-chelating phenolic acid, 2,3-dihydroxybenzoate, by a tryptophan-requiring strain (M-13) of Bacillus subtilis was inversely proportional to the iron added to the medium. Addition of iron as the ferric chelates of two secondary hydroxamates (ferri-schizokinen and Desferal) markedly reduced excretion. Synthesis of 2,3-dihydroxybenzoate from chorismate by extracts of B. subtilis M-13, grown in low-iron medium, was unaltered by additions of FeSO(4), FeCl(3), ferrischizokinen, 2,3-dihydroxybenzoate, the 2,3-dihydroxybenzoate-iron complex, or by extracts of cells grown in high-iron medium (which contained no demonstrable 2,3-dihydroxybenzoate-synthesizing activity) to the extracts of "low-iron cells." Iron control seemed to involve repression of synthesis of the enzymes in the 2,3-dihydroxybenzoate pathway. Both ferri-schizokinen and 2,3-dihydroxybenzoate plus iron enhanced considerably the otherwise minimal repressive effects of iron at low concentrations. Ferri-schizokinen delayed derepression of the pathway in B. subtilis M-13, and reduced its rate of synthesis after derepression. Addition of FeSO(4) to derepressed cells of B. subtilis M-13 halted synthesis of the enzymes after a lag period. The effect of the ferric hydroxamates was related to the capacity of B. subtilis M-13 to incorporate (59)Fe(3+) from Desferal-(59)Fe(3+). Cellular accumulation of (59)Fe(3+) from Desferal-(59)Fe(3+) after 20 min was nearly double that incorporated from (59)FeCl(3).  相似文献   

17.
Rubredoxin and two distinct ferredoxins have been purified from Desulfovibrio africanus. The rubredoxin has a molecular weight of 6000 while the ferredoxins appear to be dimers of identical subunits of approximately 6000 to 7000 molecular weight. Rubredoxin contains one iron atom, no acid-labile sulfide and four cysteine residues per molecule. Its absorbance ratio A278/A490 is 2.23 and its amino acid composition is characterized by the absence of leucine and a preponderance of acidic amino acids. The two ferredoxins, designated I and II, are readily separated on DEAE-cellulose. The amino acid compositions of ferredoxins I and II show them to be different protein species; the greater number of acidic amino acid residues in ferredoxin I than in ferredoxin II appears to account for separation based on electronic charge. Both ferredoxins contain four iron atoms, four acid-labile residues per molecule. Spectra of the two ferredoxins differ from those of ferredoxins of other Desulfovibrio species by exhibiting a pronounced absorption peak at 283 nm consistent with an unusual high content of aromatic residues. The A385/A283 absorbance ratio of ferredoxins I and II are 0.56 and 0.62, respectively. The N-terminal sequencing data of the two ferredoxins clearly indicate that ferredoxins I and II are different protein species. However, the two proteins exhibit a high degree of homology.  相似文献   

18.
Among the 118 genes upregulated by Pseudomonas aeruginosa in response to iron starvation [Ochsner, U. A., Wilderman, P. J., Vasil, A. I., and Vasil, M. L. (2002) Mol. Microbiol. 45, 1277-1287], we focused on the products of the two genes encoding electron transfer proteins, as a means of identifying the redox partners of the heme oxygenase (pa-HO) expressed under low-iron stress conditions. Biochemical and spectroscopic investigations demonstrated that the bfd gene encodes a 73-amino acid protein (pa-Bfd) that incorporates a [2Fe-2S]2+/+ center, whereas the fpr gene encodes a 258-residue NADPH-dependent ferredoxin reductase (pa-FPR) that utilizes FAD as a cofactor. In vitro reconstitution of pa-HO catalytic activity with the newly characterized proteins led to the surprising observation that pa-FPR efficiently supports the catalytic cycle of pa-HO, without the need of a ferredoxin. In comparison, electron transfer from pa-Bfd to pa-HO is sluggish, which strongly argues against the possibility that the seven electrons needed by pa-HO to degrade biliverdin are transferred from NADPH to pa-HO in a ferredoxin (Bfd)-dependent manner. Given that pa-HO functions to release iron from exogenous heme acquired under iron-starvation conditions, the use of a flavoenzyme rather than an iron-sulfur center-containing protein to support heme degradation is an efficient use of resources in the cell. The crystal structure of pa-FPR (1.6 A resolution) showed that its fold is comparable that of the superfamily of ferredoxin reductases and most similar to the structure of Azotobacter vinelandii FPR and Escherichia coli flavodoxin reductase. The latter two enzymes interact with distinct redox partners, a ferredoxin and a flavodoxin, respectively. Hence, findings reported herein extend the range of redox partners recognized by the fold of pa-FPR to include a heme oxygenase (pa-HO).  相似文献   

19.
G R Bell  J P Lee  H D Peck  J L Gall 《Biochimie》1978,60(3):315-320
A purified preparation of hydrogenase from D. gigas was inactive toward ferredoxin, flavodoxin or rubredoxin in the absence of cytochrome c3 (M.W. 13,000), in an atmosphere of hydrogen, although direct reduction of benzyl viologen or FMN was possible. The hydrogen evolution reaction from dithionite was possible with methyl viologen. The same reaction also occured with cytochrome c3 (M.W. 13,000) or cytochrome c3 (M.W. 26,000). Addition of either ferredoxin or flavodoxin did not accelerate the reaction.  相似文献   

20.
Mutants of Corynebacterium diphtheriae C7(beta) that are resistant to the inhibitory effects of iron on toxinogenesis were identified by their ability to form colonies surrounded by toxin-antitoxin halos on agar medium containing both antitoxin and a high concentration of iron. Chromosomal mutations were essential for the altered phenotypes of four independently isolated mutant strains. During growth in deferrated liquid medium containing various amounts of added iron, these mutants differed from wild-type C. diphtheriae C7(beta) in several ways. Their growth rates were slower under low-iron conditions and were stimulated to various degrees under high-iron conditions. The concentrations of iron at which optimal toxin production occurred were higher for the mutants than for wild-type C. diphtheriae C7(beta). Toxin production by the mutants during growth in low-iron medium occurred throughout the period of exponential growth at nearly constant rates that were proportional to the bacterial growth rates. In contrast, toxin production by wild-type C. diphtheriae C7(beta) in similar low-iron cultures occurred predominantly during the late exponential phase, when iron was a growth-limiting nutrient. Additional studies demonstrated that these mutants had severe defects in their transport systems for ferric iron. We propose that the altered regulation of toxinogenesis by iron in our mutants was caused by the severe defects in their iron transport systems. As a consequence, the mutants exhibited a low-iron phenotype during growth under conditions that permitted wild-type C. diphtheriae C7(beta) to exhibit a high-iron phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号