首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Hydroxy-1,N(2)-propano-2'deoxyguanosine (gamma-HOPdG) is a major deoxyguanosine adduct derived from acrolein, a known mutagen. In vitro, this adduct has previously been shown to pose a severe block to translesion synthesis by a number of polymerases (pol). Here we show that both yeast and human pol eta can incorporate a C opposite gamma-HOPdG at approximately 190- and approximately 100-fold lower efficiency relative to the control deoxyguanosine and extend from a C paired with the adduct at approximately 8- and approximately 19-fold lower efficiency. Although DNA synthesis past gamma-HOPdG by yeast pol eta was relatively accurate, the human enzyme misincorporated nucleotides opposite the lesion with frequencies of approximately 10(-1) to 10(-2). Because gamma-HOPdG can adopt both ring closed and ring opened conformations, comparative replicative bypass studies were also performed with two model adducts, propanodeoxyguanosine and reduced gamma-HOPdG. For both yeast and human pol eta, the ring open reduced gamma-HOPdG adduct was less blocking than gamma-HOPdG, whereas the ring closed propanodeoxyguanosine adduct was a very strong block. Replication of DNAs containing gamma-HOPdG in wild type and xeroderma pigmentosum variant cells revealed a somewhat decreased mutation frequency in xeroderma pigmentosum variant cells. Collectively, the data suggest that pol eta might potentially contribute to both error-free and mutagenic bypass of gamma-HOPdG.  相似文献   

2.
Proliferating cell nuclear antigen (PCNA) has been shown to interact with a variety of DNA polymerases (pol) such as pol delta, pol epsilon, pol iota, pol kappa, pol eta, and pol beta. Here we show that PCNA directly interacts with the newly discovered pol lambda cloned from human cells. This interaction stabilizes the binding of pol lambda to the primer template, thus increasing its affinity for the hydroxyl primer and its processivity in DNA synthesis. However, no effect of PCNA was detected on the rate of nucleotide incorporation or discrimination efficiency by pol lambda. PCNA was found to stimulate efficient synthesis by pol lambda across an abasic (AP) site. When compared with pol delta, human pol lambda showed the ability to incorporate a nucleotide in front of the lesion. Addition of PCNA led to efficient elongation past the AP site by pol lambda but not by pol delta. However, when tested on a template containing a bulky DNA lesion, such as the major cisplatin Pt-d(GpG) adduct, PCNA could not allow translesion synthesis by pol lambda. Our results suggest that the complex between PCNA and pol lambda may play an important role in the bypass of abasic sites in human cells.  相似文献   

3.
Platinum anticancer agents form bulky DNA adducts which are thought to exert their cytotoxic effect by blocking DNA replication. Translesion synthesis, one of the pathways of postreplication repair, is thought to account for some resistance to DNA damage and much of the mutagenicity of bulky DNA adducts in dividing cells. Oxaliplatin has been shown to be effective in cisplatin-resistant cell lines and less mutagenic than cisplatin in the Ames assay. We have shown that the eukaryotic DNA polymerases yeast pol zeta, human pol beta, and human pol gamma bypass oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. Human pol eta, a product of the XPV gene, has been shown to catalyze efficient translesion synthesis past cis, syn-cyclobutane pyrimidine dimers. In the present study we compared translesion synthesis past different Pt-GG adducts by human pol eta. Our data show that, similar to other eukaryotic DNA polymerases, pol eta bypasses oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. However, pol eta-catalyzed translesion replication past Pt-DNA adducts was more efficient and less accurate than that seen for previously tested polymerases. We show that the efficiency and fidelity of translesion replication past Pt-DNA adducts appear to be determined by both the structure of the adduct and the DNA polymerase active site.  相似文献   

4.
Avkin S  Livneh Z 《Mutation research》2002,510(1-2):81-90
The oxidation product of guanine, 8-oxoguanine, is a major lesion formed in DNA by intracellular metabolism, ionizing radiation, and tobacco smoke. Using a recently developed method for the quantitative analysis of translesion replication, we have studied the bypass of 8-oxoguanine in vivo by transfecting human cells with a gapped plasmid carrying a site-specific 8-oxoguanine in the ssDNA region. The efficiency of bypass in the human large-cell lung carcinoma cell line H1299 was 80%, and it was similar when assayed in the presence of aphidicolin, an inhibitor of DNA polymerases alpha, delta and epsilon. A similar extent of bypass was observed also in XP-V cells, defective in pol eta, both in the absence and presence of aphidicolin. DNA sequence analysis indicated that the major nucleotide inserted opposite the 8-oxoguanine was the correct nucleotide C, both in H1299 cells (81%) and in XP-V cells (77%). The major mutagenic event was the insertion of an A, both in H1299 and XP-V cells, and it occurred at a frequency of 16-17%, significantly higher than previously reported. Interestingly, the misinsertion frequency of A opposite 8-oxoguanine was decreased in XP-V cells in the presence of aphidicolin, and misinsertion of G was observed. This modulation of the mutagenic specificity at 8-oxoguanine is consistent with the notion that while not essential for the bypass reaction, pol eta and pol delta, when present, are involved in bypass of 8-oxoguanine in vivo.  相似文献   

5.
Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.  相似文献   

6.
alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cellular error-prone translesion synthesis. Experiments with xeroderma pigmentosum variant cells, which lack pol eta, confirmed this hypothesis. The in vitro results also suggested the involvement of pol iota and/or REV1 in inserting correct dCMP opposite alpha-OH-PdG during error-free synthesis. However, none of translesion-specialized DNA polymerases catalyzed significant extension from a dC terminus when paired opposite alpha-OH-PdG. Thus, our results indicate the following. (i) Multiple DNA polymerases are involved in the bypass of alpha-OH-PdG in human cells. (ii) The accurate and inaccurate syntheses are catalyzed by different polymerases. (iii) A modification of the current eukaryotic bypass model is necessary to account for the accurate bypass synthesis in human cells.  相似文献   

7.
The effectiveness of in vitro primer elongation reactions catalyzed by human bypass DNA polymerases kappa (hDinB1), pol eta (hRad30A), pol iota (hRad30B), and yeast pol zeta (Rev3 and Rev7) in site-specifically modified template oligonucleotide strands were studied in vitro. The templates contained single bulky lesions derived from the trans-addition of the mutagenic (+)- or (-)-enantiomers of r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (a metabolite of the environmental carcinogen benzo[a]pyrene), to the exocyclic amino groups of guanine or adenine in oligonucleotide templates 33, or more, bases long. In "running start" primer extension reactions, pol kappa effectively bypassed both the stereoisomeric (+)- and (-)-trans-guanine adducts but not the analogous adenine adducts. In sharp contrast, pol eta, which exhibits considerable sequence homology with pol kappa (both belong to the group of Y family polymerases), is partially blocked by the guanine adducts and the (-)-trans-adenine adduct, although the stereoisomeric (+)-trans-adenine adduct is more successfully bypassed. Neither pol iota nor pol zeta, either alone or in combination, were effective in trans-lesion synthesis past the same adducts. In all cases, the fidelity of insertion is dependent on adduct stereochemistry and structure. Generally, error-free nucleotide insertion opposite the lesions tends to depend more on adduct stereochemistry than error-prone insertion. None of the polymerases tested are a universal bypass polymerase for the stereoisomeric bulky polycyclic aromatic hydrocarbon-DNA adducts derived from anti-BPDE.  相似文献   

8.
1,N(6)-Ethenodeoxyadenosine, a DNA adduct generated by exogenous and endogenous sources, severely blocks DNA synthesis and induces miscoding events in human cells. To probe the mechanism for in vivo translesion DNA synthesis across this adduct, in vitro primer extension studies were conducted using newly identified human DNA polymerases (pol) eta and kappa, which have been shown to catalyze translesion DNA synthesis past several DNA lesions. Steady-state kinetic analyses and analysis of translesion products have revealed that the synthesis is >100-fold more efficient with pol eta than with pol kappa and that both error-free and error-prone syntheses are observed with these enzymes. The miscoding events include both base substitution and frameshift mutations. These results suggest that both polymerases, particularly pol eta, may contribute to the translesion DNA synthesis events observed for 1,N(6)-ethenodeoxyadenosine in human cells.  相似文献   

9.
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.  相似文献   

10.
DNA polymerase mu (pol mu) is a member of the pol X family of DNA polymerases, and it shares a number of characteristics of both DNA polymerase beta (pol beta) and terminal deoxynucleotidyl transferase (TdT). Because pol beta has been shown to perform translesion DNA synthesis past cisplatin (CP)- and oxaliplatin (OX)-GG adducts, we determined the ability of pol mu to bypass these lesions. Pol mu bypassed CP and OX adducts with an efficiency of 14-35% compared to chain elongation on undamaged DNA, which is second only to pol eta in terms of bypass efficiency. The relative ability of pol mu to bypass CP and OX adducts was dependent on both template structure and sequence context. Since pol mu has been shown to be more efficient on gapped DNA templates than on primed single-stranded DNA templates, we determined the ability of pol mu to bypass Pt-DNA adducts on both primed single-stranded and gapped templates. The bypass of Pt-DNA adducts by pol mu was highly error-prone on all templates, resulting in 2, 3, and 4 nt deletions. We postulate that bypass of Pt-DNA adducts by pol mu may involve looping out the Pt-GG adduct to allow chain elongation downstream of the adduct. This reaction appears to be facilitated by the presence of a downstream "acceptor" and a gap large enough to provide undamaged template DNA for elongation past the adduct, although gapped DNA is clearly not required for bypass.  相似文献   

11.
Heterocyclic arylamines are highly mutagenic and cause tumors in animal models. The mutagenicity is attributed to the C8- and N2-G adducts, the latter of which accumulates due to slower repair. The C8- and N 2-G adducts derived from 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) were placed at the G1 and G3 sites of the NarI sequence, in which the G3 site is an established hot spot for frameshift mutation with the model arylamine derivative 2-acetylaminofluorene but G1 is not. Human DNA polymerase (pol) eta extended primers beyond template G-IQ adducts better than did pol kappa and much better than pol iota or delta. In 1-base incorporation studies, pol eta inserted C and A, pol iota inserted T, and pol kappa inserted G. Steady-state kinetic parameters were measured for these dNTPs opposite the C8- and N 2-IQ adducts at both sites, being most favorable for pol eta. Mass spectrometry of pol eta extension products revealed a single major product in each of four cases; with the G1 and G3 C8-IQ adducts, incorporation was largely error-free. With the G3 N 2-IQ adduct, a -2 deletion occurred at the site of the adduct. With the G1 N 2-IQ adduct, the product was error-free at the site opposite the base and then stalled. Thus, the pol eta products yielded frame-shifts with the N 2 but not the C8 IQ adducts. We show a role for pol eta and the complexity of different chemical adducts of IQ, DNA position, and DNA polymerases.  相似文献   

12.
Acrolein, an alpha,beta-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from oxidation of polyamines. The reaction of acrolein with the N2 group of guanine in DNA leads to the formation of a cyclic adduct, gamma-hydroxy-1,N2-propano-2'-deoxyguanosine (gamma-HOPdG). Previously, we have shown that proficient replication through the gamma-HOPdG adduct can be mediated by the sequential action of human DNA polymerases (Pols) iota and kappa, in which Poliota incorporates either pyrimidine opposite gamma-HOPdG, but Polkappa extends only from the cytosine. Since gamma-HOPdG can adopt either a ring-closed cyclic form or a ring-opened form in DNA, to better understand the mechanisms that Pols iota and kappa employ to promote replication through this lesion, we have examined the ability of these polymerases to replicate through the structural analogs of gamma-HOPdG that are permanently either ring closed or ring opened. Our studies with these model adducts show that whereas the ring-opened form of gamma-HOPdG is not inhibitory to synthesis by human Pols eta, iota, or kappa, only Poliota is able to incorporate nucleotides opposite the ring-closed form, which is known to adopt a syn conformation in DNA. From these studies, we infer that (i) Pols eta, iota, and kappa have the ability to proficiently replicate through minor-groove DNA lesions that do not perturb the Watson-Crick hydrogen bonding of the template base with the incoming nucleotide, and (ii) Poliota can accommodate a minor-groove-adducted template purine which adopts a syn conformation in DNA and forms a Hoogsteen base pair with the incoming nucleotide.  相似文献   

13.
Hepatocellular carcinomas (HCCs) are the third leading cause of cancer deaths worldwide. The highest rates of early onset HCCs occur in geographical regions with high aflatoxin B1 (AFB1) exposure, concomitant with hepatitis B infection. Although the carcinogenic basis of AFB1 has been ascribed to its mutagenic effects, the mutagenic property of the primary AFB1-DNA adduct, AFB1-N7-Gua, in mammalian cells has not been studied extensively. Taking advantage of the ability to create vectors containing a site-specific DNA adduct, the mutagenic potential was determined in primate cells. This adduct was highly mutagenic following replication in COS-7 cells, with a mutation frequency of 45%. The spectrum of mutations was predominantly G to T base substitutions, a result that is consistent with previous mutation data derived from aflatoxin-associated HCCs. To assess which DNA polymerases (pol) might contribute to the mutational outcome, in vitro replication studies were performed. Unexpectedly, replicative pol δ and the error-prone translesion synthesis pol ζ were able to accurately bypass AFB1-N7-Gua. In contrast, replication bypass using pol κ was shown to occur with low fidelity and could account for the commonly detected G to T transversions.  相似文献   

14.
4-Hydroxyequilenin (4-OHEN)-dC is a major, potentially mutagenic DNA adduct induced by equine estrogens used for hormone replacement therapy. To study the miscoding property of 4-OHEN-dC and the involvement of Y-family human DNA polymerases (pols) eta, kappa and iota in that process, we incorporated 4-OHEN-dC into oligodeoxynucleotides and used them as templates in primer extension reactions catalyzed by pol eta, kappa and iota. Pol eta inserted dAMP opposite 4-OHEN-dC, accompanied by lesser amounts of dCMP and dTMP incorporation and base deletion. Pol kappa promoted base deletions as well as direct incorporation of dAMP and dCMP. Pol iota worked in conjunction with pol kappa, but not with pol eta, at a replication fork stalled by the adduct, resulting in increased dTMP incorporation. Our results provide a direct evidence that Y-family DNA pols can switch with one another during synthesis past the lesion. No direct incorporation of dGMP, the correct base, was observed with Y-family enzymes. The miscoding potency of 4-OHEN-dC may be associated with the development of reproductive cancers observed in women receiving hormone replacement therapy.  相似文献   

15.
1,N(6)-Ethanoadenine (EA) is an exocyclic adduct formed from DNA reaction with the antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). To understand the role of this adduct in the mechanism of mutagenicity or carcinogenicity by BCNU, an oligonucleotide with a site-specific EA was synthesized using phosphoramidite chemistry. We now report the in vitro miscoding properties of EA in translesion DNA synthesis catalyzed by mammalian DNA polymerases (pols) alpha, beta, eta and iota. These data were also compared with those obtained for the structurally related exocyclic adduct, 1,N(6)-ethenoadenine (epsilonA). Using a primer extension assay, both pols alpha and beta were primarily blocked by EA or epsilonA with very minor extension. Pol eta, a member of the Y family of polymerases, was capable of catalyzing a significant amount of bypass across both adducts. Pol eta incorporated all four nucleotides opposite EA and epsilonA, but with differential preferences and mainly in an error-prone manner. Human pol iota, a paralog of human pol eta, was blocked by both adducts with a very small amount of synthesis past epsilonA. It incorporated C and, to a much lesser extent, T, opposite either adduct. In addition, the presence of an A adduct, e.g. epsilonA, could affect the specificity of pol iota toward the template T immediately 3' to the adduct. In conclusion, the four polymerases assayed on templates containing an EA or epsilonA showed differential bypass capacity and nucleotide incorporation specificity, with the two adducts not completely identical in influencing these properties. Although there was a measurable extent of error-free nucleotide incorporation, all these polymerases primarily misincorporated opposite EA, indicating that the adduct, similar to epsilonA, is a miscoding lesion.  相似文献   

16.
DNA polymerases beta (pol beta ) and eta (pol eta ) are the only two eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Frameshift errors are an important aspect of mutagenesis. We have compared the types of frameshifts that occur during translesion synthesis past cisplatin and oxaliplatin adducts in vitro by pol beta and pol eta on a template containing multiple runs of nucleotides flanking a single platinum-GG adduct. Translesion synthesis past platinum adducts by pol beta resulted in approximately 50% replication products containing single-base deletions. For both adducts the majority of -1 frameshifts occurred in a TTT sequence 3-5 bp upstream of the DNA lesion. For pol eta, all of the bypass products for both cisplatin and oxaliplatin adducts contained -1 frameshifts in the upstream TTT sequence and most of the products of replication on oxaliplatin-damaged templates had multiple replication errors, both frameshifts and misinsertions. In addition, on platinated templates both polymerases generated replication products 4-8 bp shorter than the full-length products. The majority of short cisplatin-induced products contained an internal deletion which included the adduct. In contrast, the majority of oxaliplatin-induced short products contained a 3' terminal deletion. The implications of these in vitro results for in vivo mutagenesis are discussed.  相似文献   

17.
Singer B  Medina M  Zhang Y  Wang Z  Guliaev AB  Hang B 《Biochemistry》2002,41(6):1778-1785
8-(Hydroxymethyl)-3,N(4)-etheno-C (8-HM-epsilonC) is an exocyclic adduct resulting from the reaction of dC with glycidaldehyde, a mutagen and animal carcinogen. This compound has now been synthesized and its phosphoramidite incorporated site-specifically into a defined 25-mer oligonucleotide. In this study, the mutagenic potential of this adduct in the 25-mer oligonucleotide was investigated in an in vitro primer-template extension assay using four mammalian DNA polymerases. The miscoding potentials were also compared to those of an analogous derivative, 3,N(4)-etheno C (epsilonC), in the same sequence. Both adducts primarily blocked replication by calf thymus DNA polymerase alpha at the modified base, while human polymerase beta catalyzed measurable replication synthesis through both adducts. Nucleotide insertion experiments showed that dA and dC were incorporated by pol beta opposite either adduct, which would result in a C --> T transition or C --> G transversion. Human polymerase eta, a product of the xeroderma pigmentosum variant (XP-V) gene, catalyzed the most efficient bypass of the two lesions with 25% and 32% for 8-HM-epsilonC and epsilonC bypassed after 15 min. Varying amounts of all four bases opposite the modified bases resulted with pol eta. Human polymerase kappa primarily blocked synthesis at the base prior to the adduct. However, some specific misincorporation of dT resulted, forming an epsilonC.T or 8-HM-epsilonC.T pair. From these data, we conclude that the newly synthesized glycidaldehyde-derived adduct, 8-HM-epsilonC, is a miscoding lesion. The bypass efficiency and insertion specificity of 8-HM-epsilonC and epsilonC were similar for all four polymerases tested, which could be attributed to the similar planarity and sugar conformations for these two derivatives as demonstrated by molecular modeling studies.  相似文献   

18.
Unrepaired replication-blocking DNA lesions are bypassed by specialized DNA polymerases, members of the Y super-family. In Escherichia coli the major lesion bypass DNA polymerase is pol V, whereas the function of its homologue, pol IV, is not fully understood. In vivo analysis showed that pol V has a major role in bypass across an abasic site analog, with little or no involvement of pol IV. This can result from the inability of pol IV to bypass the abasic site, or from in vivo regulation of its activity. In vitro analysis revealed that purified pol IV, in the presence of the beta subunit DNA sliding clamp, and the gamma complex clamp loader, bypassed a synthetic abasic site with very high efficiency, reaching 73% in 2 min. Bypass was observed also in the absence of the processivity proteins, albeit at a 10- to 20-fold lower rate. DNA sequence analysis revealed that pol IV skips over the abasic site, producing primarily small deletions. The RecA protein inhibited bypass by pol IV, but this inhibition was alleviated by single-strand binding protein (SSB). The fact that the in vitro bypass ability of pol IV is not manifested under in vivo conditions suggests the presence of a regulatory factor, which might be involved in controlling the access of the bypass polymerases to the damaged site in DNA.  相似文献   

19.
Dixon MJ  Lahue RS 《DNA Repair》2002,1(9):763-770
Triplet repeats undergo frequent mutations in human families afflicted with certain neurodegenerative diseases and also in model organisms. Although the molecular mechanisms of triplet repeat instability are still being identified, it is likely that aberrant DNA synthesis plays an important role. Many DNA polymerases stall at triplet repeat sequences, probably due to the adoption of unusual DNA secondary structures. One possible mechanism to explain triplet repeat contractions is that a triplet repeat hairpin on the template strand inhibits replicative polymerases and that one or more bypass polymerases are recruited for synthesis past the hairpin. If the translesion synthesis is mutagenic, contractions can be generated. To address this possibility, Saccharomyces cerevisiae strains lacking either pol zeta (rev7), pol eta (rad30), or both were tested for trinucleotide repeat (TNR) contractions using three separate, sensitive genetic assays. If these bypass polymerases are important for mutagenesis, then the mutants should show a reduction in the contraction rate. Two genetic tests for triplet repeat contractions showed no significant change for the mutants compared to wild type. A third assay showed a five-fold reduction in contraction rates due to pol eta ablation. Despite this modest decrease, the overall contraction rate was still high, indicating that many deletions still occur in the absence of both polymerases. Expansion rates were also unaffected in the mutant strains. These results indicate that, in yeast, pol eta and pol zeta most likely have little role in triplet repeat mutagenesis.  相似文献   

20.
Several recently discovered human DNA polymerases are associated with translesion synthesis past DNA adducts. These include human DNA polymerase kappa (pol kappa), a homologue of Escherichia coli pol IV, which enhances the frequency of spontaneous mutation. Using a truncated form of pol kappa (pol kappa Delta C), translesion synthesis past dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) adducts was explored. Site-specifically-modified oligodeoxynucleotides containing a single stereoisomeric dG-N(2)-BPDE lesion were used as DNA templates for primer extension reactions catalyzed by pol kappa Delta C. Primer extension was retarded one base prior to the dG-N(2)-BPDE lesion; when incubated for longer times or with higher concentration of enzyme, full primer extension was observed. Quantitative analysis of fully extended products showed preferential incorporation of dCMP, the correct base, opposite all four stereoisomeric dG-N(2)-BPDE lesions. (+)-trans-dG-N(2)-BPDE, a major BPDE-DNA adduct, promoted small amounts of dTMP, dAMP, and dGMP misincorporation opposite the lesion (total 2.7% of the starting primers) and deletions (1.1%). Although (+)-cis-dG-N(2)-BPDE was most effective in blocking translesion synthesis, its miscoding properties were similar to other dG-N(2)-BPDE isomers. Steady-state kinetic data indicate that dCMP is efficiently inserted opposite all dG-N(2)-BPDE adducts and extended past these lesions. The relative frequency of translesion synthesis (F(ins) x F(ext)) of dC.dG-N(2)-BPDE pairs was 2-6 orders of magnitude higher than that of other mismatched pairs. Pol kappa may play an important role in translesion synthesis by incorporating preferentially the correct base opposite dG-N(2)-BPDE. Its relatively low contribution to mutagenicity suggests that other newly discovered DNA polymerase(s) may be involved in mutagenic events attributed to dG-N(2)-BPDE adducts in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号