首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical activities of the olfactory neurones in the brain of the honeybee were investigated. Odorous stimuli were given to each antenna separately or to both simultaneously. The inputs from the antennae affected both the impulse frequency and the latency of the olfactory interneurones in the protocerebrum. The predominant response was to the stimulation of the ipsilateral antenna. Input from the contralateral antenna produced mainly excitatory effects, although a few inputs gave inhibitory effects. No particular relationships between the loci of the units in the brain and the types of responses produced were found. Most of the units were located in the protocerebral lobe and in the central commissure. The units in the deutocerebrum responded only to the stimulation of the ipsilateral antenna, and the magnitude of response and the latency were not different with respect to unilateral or bilateral stimulation of the antennae. Differences in latency between unilateral and bilateral stimulation were observed in some of the units in the protocerebrum. Neural models which explain these phenomena are postulated.  相似文献   

2.
The study of olfactory lateralization in human subjects has given rise to many publications, but the findings have often been contradictory. Most research used either birhinal or monorhinal stimulations, but rarely a comparison between these two types of olfactory input. The aim of this study was to investigate variations in psychophysiological measurements and test each side of the nose and binasal performances. This work used bilateral electrodermal recordings and compared the skin conductance responses (SCRs) for a pleasant odorant (isoamyl acetate) and an unpleasant odorant (triethylamine) in a suprathreshold concentration on 30 dextral subjects (16 females and 14 males). First, the results reported no differences between the two nostrils but differences in electrodermal activity (EDA) in relation to the odorant: 1) higher amplitude in response to unpleasant versus pleasant odorant; 2) no differences between monorhinal and birhinal stimulations for the unpleasant odour but higher amplitude in response to birhinal versus monorhinal for the pleasant odour. Second, the results showed constant bilateral differences in EDA recordings and are discussed in terms of hemispheric asymmetry activation.  相似文献   

3.
Integral evoked potentials and intracellular potentials of single units were recorded from the frog olfactory bulb in response to afferent stimulation by two methods: electrical stimulation of the olfactory nerve and natural stimulation with odorous substances. At least four components can be distinguished in the response of the olfactory bulb to single electrical stimulation: an integral action potential of the olfactory nerve fibers, a synaptic glomerular potential, and two polysynaptic components. Responses of mitral and superficial (interglomerular) bulb cells to orthodromic electrical stimulation and antidromic stimulation of the olfactory tract are described. A functional similarity between the mitral cells of frogs and the analogous cells of rabbits is noted. Responses of the bulb to stimulation of olfactory receptors by odorous substances are characterized by regular waves of potentials. Corresponding waves of postsynaptic potentials are observed in the interglomerular cells of the bulb. These latter must, therefore, participate in generation of the rhythmic response. During stimulation by odorous substances, prolonged PSPs, producing excitation or inhibition of the spike discharge, arise in various cells of the bulb. The results of component analysis of the integral response and the functional properties of single bulb units are discussed.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow; Institute of Biology of Internal Waters, Academy of Sciences of the USSR, Borok, Yaroslavl'Region. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 269–277, November–December, 1969.  相似文献   

4.
Electrical activity was recorded from single cells in the olfactorybulb when electrically stimulating the medial and lateral olfactorytract and when stimulating the olfactory epithelium with aminoacids. Bulbar units excited by stimulation of the medial olfactorytract were found in the medial and middle parts of the bulb.Neurones in the dorso-lateral part of the bulb were excitedby stimulation of lateral tract. Units inhibited by stimulationof the lateral or medial olfactory tracts had a reversed distributionwith the majority found in the medial or lateral parts of thebulb respectively. The chemicals tested induced changes in thedischarge of units mainly situated in the lateral part of thebulb.  相似文献   

5.
To examine the functional subdivision of the teleost olfactory bulb, extracellular recordings were made from the posterior part of the medial region of the olfactory bulb in the crucian carp, Carassius carassius. Bulbar units classified as type I or type II were frequently and simultaneously encountered at a recording site. Type I units displayed a diphasic action potential (AP) with a relatively small amplitude, a short duration (rise time approximately 1 ms) and high spontaneous activity (2.5 per s). Type II units exhibited an AP with a rise time of approximately 1.8 ms and low spontaneous activity (1.5 per s). The AP of this latter unit was nearly always followed by a slow potential, a characteristic diphasic wave with a rise time of approximately 5 ms. Chemical stimulation of the olfactory organ with a graded series of conspecific skin extract induced an increased firing of the type I units. During the period of increased activity of the type I units, the activity of the type II units was suppressed. Stimulation with nucleotides, amino acids and taurolithocholic acid did not induce firing of the type I units of the posterior part of the medial region of the olfactory bulb. These results indicate that the posterior part of the medial region of the olfactory bulb is both sensitive to and selective for skin extract from conspecifics, which has been shown to be a potent stimulus inducing alarm behaviour. The results of the present study indicate that recording single unit activity from a particular region of the olfactory bulb is a suitable method for isolating pheromones or other chemical signals that induce specific activity in the olfactory system. The projection of the neurons categorized as type II was determined by antidromic activation of their axons by electrical stimulation applied to the medial bundle of the medial olfactory tract. The anatomical basis of the type I and type II units in the fish olfactory bulb is discussed.  相似文献   

6.
The responses to odor stimulation of 40 single units in the olfactory mucosa and of 18 units in the olfactory bulb of the tortoise (Gopherus polyphemus) were recorded with indium-filled, Pt-black-tipped microelectrodes. The test battery consisted of 27 odorants which were proved effective by recording from small bundles of olfactory nerve. Two concentrations of each odorant were employed. These values were adjusted for response magnitudes equal to those for amyl acetate at –2.5 and –3.5 log concentration in olfactory twig recording. Varying concentrations were generated by an injection-type olfactometer. The mucosal responses were exclusively facilitory with a peak frequency of 16 impulses/sec. 19 mucosal units responded to at least one odorant and each unit was sensitive to a limited number of odorants (1–15). The sensitivity pattern of each unit was highly individual, with no clear-cut types, either chemical or qualitative, emerging. Of the 18 olfactory bulb units sampled, all responded to at least one odorant. The maximum frequency observed during a response was 39 impulses/sec. The bulbar neurons can be classified into two types. There are neurons that respond exclusively with facilitation and others that respond with facilitation to some odorants and with inhibition to others. Qualitatively or chemically similar odorants did not generate similar patterns across bulbar units.  相似文献   

7.
Three olfactory nerve branches respectively subserving either a medial, an intermediate, or a lateral region of the dorsal olfactory receptor sheet of the bullfrog Rana catesbeiana were electrically stimulated with bipolar platinum hook electrodes. Extracellular single unit responses from 93 second-order cells in different regions of the olfactory bulb were recorded with metal-filled glass micropipets. The excitatory responsiveness of each unit to the stimulation of each of the three nerve branches (response profile) was determined. Some units were sensitive to stimulation of each of the three nerve branches, thus suggesting a wide projection from the entire receptor sheet. On the other hand, other units were more selective. Of this latter group, units in the lateral bulb were excited by nerve branches subserving the more lateral regions of the receptor sheet; units in the medial bulb were excited by the nerve branches subserving the more medial regions of the receptor sheet. These data provide electrophysiological evidence for a topographical projection of the olfactory receptor sheet onto the olfactory bulb, and further suggest that the projections onto different bulbar cells vary in degree of localization.  相似文献   

8.
Imai T  Sakano H 《Neuron》2008,58(4):465-467
In mammals, olfactory sensory neurons project their axons exclusively to the ipsilateral olfactory bulb. It remains unclear how odor information interacts between the two hemispheres of the brain. In this issue of Neuron, Yan et al. describe the precise interbulbar connection through the anterior olfactory nucleus pars externa (AONpE), which links contralateral isotypic olfactory columns.  相似文献   

9.
The functional organization of the primary olfactory center of the frog was investigated. The dynamics of changes in individual components of the potential evoked by electrical stimulation of the olfactory nerve corresponds to morphological evidence of the asymmetrical structure of the frog olfactory bulb. The character of spatial localization and of the properties of individual components of the orthodromically evoked potential suggests that a monosynaptic reciprocal activating system participates in the production of the main component of the response. The similarity between the durations of the inhibitory pauses in spontaneous activity of the mitral cells during stimulation of the olfactory nerves and of the lateral olfactory tract indicates that when all these methods of stimulation are used a single system controlling excitability of the secondary neurons is activated. It is postulated that inhibition of the mitral cells is evoked as a result of activation of a polysynaptic recurrent system incorporating interneurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 184–191, March–April, 1972.  相似文献   

10.
A salmonid olfactory system-specific protein (N24) that has been identified in lacustrine sockeye salmon (Oncorhynchus nerka) was characterized by biochemical and molecular biological techniques. N24 is a homodimer, and the intact molecular mass is estimated as approximately 43.3 kDa by gel filtration. Furthermore, N24 was located only in the cytosolic fraction of the olfactory tissues as determined by subcellular fractionation. cDNA encoding the lacustrine sockeye salmon N24 was isolated and sequenced. This cDNA contained a coding region encoding 216 amino acid residues and the molecular mass of this protein is calculated to be 242,224.77. The protein and nucleotide sequencing demonstrates the existence of a remarkable homology between N24 and glutathione S-transferase (GST; EC 2.5.1.18) class pi enzymes. Northern analysis showed that N24 mRNA with a length of 950 bases is expressed in lacustrine sockeye salmon olfactory epithelium. Olfactory receptor cells showed strong hybridization signals for N24 mRNA in the olfactory epithelium. N24 demonstrated glutathione binding activity in affinity-purified GST column experiments. The present study describes for the first time cDNA cloning of GST in fish olfactory epithelium.  相似文献   

11.
Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.  相似文献   

12.
Summary The olfactory tract of the African catfish, Clarias gariepinus, consists of two tracts, the medial and lateral olfactory tract. Ovulated female catfish are attracted by male steroidal pheromones. Attraction tests with catfish in which the medial and lateral olfactory tract have been selectively lesioned show that the effects of these pheromones are mediated by the medial olfactory tract. The central connections of the medial and lateral olfactory tract have been studied by retro- and anterograde transport techniques using horseradish peroxidase as a tracer. Upon entering the forebrain, the medial olfactory tract innervates the posterior pars ventralis and pars supracommissuralis of the area ventralis telencephali and the nucleus preopticus periventricularis, the nucleus preopticus and the nucleus recessus posterioris. Application of horseradish peroxidase to the olfactory epithelium shows that part of the innervation of the area ventralis telencephali and the nucleus preopticus periventricularis can be attributed to the nervus terminalis, which appears to be embedded in the medial olfactory tract. The lateral olfactory tract sends projections to the same brain areas but also innervates the nucleus habenularis and a large terminal field in the area dorsalis telencephali pars lateralis ventralis. Furthermore, the medial olfactory tract carries numerous axons from groups of perikarya localized in the area dorsalis telencephali. Contralateral connections have been observed in the olfactory bulb, telencephalon, diencephalon and mesencephalon. It is suggested that processes of the medial olfactory tract innervating the preoptic region may influence the gonadotropin-releasing hormone system and in doing so may lead to behavioral and physiological changes related to spawning.  相似文献   

13.
Intracellular responses of granule cells and secondary neurons of the carp olfactory bulb to electrical stimulation of the olfactory nerve and olfactory tract were investigated. Synaptic responses of granule cells to both types of stimuli consisted of an early and late EPSP and IPSP. Comparison of responses of the secondary and granule neurons indicated that the granule cells are interneurons of postsynaptic inhibition of secondary neurons. The results suggest that dendro-dendritic and recurrent collateral pathways exist for the activation of granule cells and that inhibitory synapses are located on those dendrites of the secondary neurons that are in contact with endings of olfactory nerve fibers.M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 597–602, November–December, 1975.  相似文献   

14.

Introduction

In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses.

Methods

Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb.

Results

Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration.

Conclusions

Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb.  相似文献   

15.
Amino acids reliably evoke strong responses in fish olfactory system. The molecular olfactory receptors (ORs) are located in the membrane of cilia and microvilli of the olfactory receptor neurons (ORNs). Axons of ORNs converge on specific olfactory bulb (OB) glomeruli and the neural responses of ORNs expressing single Ors activate glomerular activity patterns typical for each amino acid. Chemically similar amino acids activate more similar glomerular activity patterns then chemically different amino acids. Differential glomerular activity patterns are the structural basis for amino acid perception and discrimination. We studied olfactory discrimination in zebrafish Danio rerio (Hamilton 1822) by conditioning them to respond to each of the following amino acids: L-Ala, L-Val, L-Leu, L-Arg, and L-Phe. Subsequently, zebrafish were tested for food searching activities with 18 nonconditioned amino acids. The food searching activity during 90 s of the test period was significantly greater after stimulation with the conditioned stimulus than with the nonconditioned amino acid. Zebrafish were able to discriminate all the tested amino acids except L-Ile from L-Val and L-Phe from L-Tyr. We conclude that zebrafish have difficulties discriminating amino acid odorants that evoke highly similar chemotopic patterns of activity in the OB.  相似文献   

16.
Olfactory sensory stimulation induces a fast-phase arrest response (FPA-R) of the blowfly heart activity that has been described as a sensitive tool for testing insect reactivity to odor perception. We analyzed FPA-R occurrence to repeated olfactory stimulation with low and high 1-hexanol concentrations that are behaviorally attractant and repellent, respectively, in the blowfly. FPA-R occurrence diminished and ceased with repeated presentations of low and medium odor concentrations, according to dynamics inversely related to odor doses. On the other hand, repeated stimulation with higher odor concentrations induced persistent FPA-Rs. Sensory input amplitude to repeated presentations of singly tested odor concentrations did not change throughout stimulation sessions. A spontaneous restoration of FPA-R to olfactory stimulation was recorded 30 min after cessation of FPA-R to a previous olfactory stimulation session. However, a prompt restoration of FPA-R to olfactory stimulation after cessation of FPA-R was obtained following mechano-taste stimulation of labellar sensilla. Our findings show that the FPA-R habituates to olfactory sensory stimulation with low and medium odor concentrations according to dynamics inversely related to odor intensities. On the other hand, the FPA-R does not habituate to higher odor concentrations. Therefore, flies learn to disregard nonaversive odor information, but they cannot ignore iterative detection of a repellent volatile.  相似文献   

17.
Air flow-rate is usually higher in one nostril in comparison to the other. Also, within bounds, higher nasal flow-rate improves odorant detection. It follows from the above that odorant detection should be better in the nostril with higher flow-rate in comparison to the nostril with lower flow-rate. Paradoxically, previous research has shown that odorant detection thresholds are equal for the high and low flow-rate nostrils. Here we resolve this apparent paradox by showing that when detecting through the nostril with lower air flow-rate, humans sniffed longer than when detecting through the nostril with higher air flow-rate, thus equalizing performance between the nostrils. When this compensatory mechanism was blocked, a pronounced advantage in odorant detection was seen for the nostril with higher air flow-rate over the nostril with lower air flow-rate. Finally, we show that normal birhinal sniff duration may enable only one nostril to reach optimal threshold. This finding implies that during each sniff, each nostril conveys to the brain a slightly different image of the olfactory world. It remains to be shown how the brain combines these images into a single olfactory percept.  相似文献   

18.
Psychophysical and behavioral characteristics of olfactory adaptation   总被引:1,自引:0,他引:1  
Dalton P 《Chemical senses》2000,25(4):487-492
Sensory adaptation allows organisms to reach behavioral equilibrium with the ambient environment and respond primarily to changes in stimulation. Given its functional significance, it is not surprising that adaptation in the olfactory system exhibits many of the same characteristics as adaptation in other sensory systems, including vision. Repeated or prolonged exposure to an odorant typically leads to stimulus-specific decreases in olfactory sensitivity to that odorant, but sensitivity recovers over time in the absence of further exposure. Psychophysical analysis shows that olfactory adaptation results in elevations in odor thresholds and in reduced responsiveness to suprathreshold stimulation. Further, the magnitude of the decrease and the time course of adaptation and recovery are dependent on the concentration of the odor and on the duration of exposure. It is generally agreed that olfactory adaptation can occur at multiple levels in the olfactory system and can involve both peripheral (receptor level) and more central (post-receptor) components. Evidence for peripheral and central involvement comes from studies showing that monorhinal stimulation results in adaptation in both the ipsilateral and contralateral nostril, although the degree of adaptation in the ipsilateral nostril is more profound and recovery is slower. Additional evidence for central involvement comes from studies that have found relatively small decreases in peripheral response following repeated stimulation despite substantial reductions in perceived intensity. Most psychophysical studies of adaptation, however, have not differentiated the peripheral and central processes. Although relatively few in number, studies of the parametric features of olfactory adaptation in both vertebrate (e.g. rat) and invertebrate (e.g. Drosophila, Caenorhabditis elegans) animal models appear to replicate the findings in psychophysical studies of adult humans. Despite the broad overall similarity of olfactory adaptation to adaptation in other sensory systems, olfactory adaptation exhibits some unique features. Adaptation in olfaction has been shown to be very long-lasting in some cases and may be modulated by the contribution of pre-neural events and physico-chemical properties of the odorant molecules that govern diffusion to receptor sites and post-receptor clearance.  相似文献   

19.
Age-related alterations in the electrical response of olfactory epithelium to odorant-induced stimulation and certain morphometric indices were investigated in male and female laboratory mice of strains C57BL/6 (B6) and AKR (AK). It was found that maximum amplitude of response to odorants characterized young and adolescent animals. Ageing is accompanied by a decline in response level in the olfactory epithelium. Age-related distinctions between morphometric characteristics of the olfactory organ such as overall area and depth of the olfactory epithelium were noted.Applied Mathematics and Cybernetics Research Institute, N. I. Lobachevskii University, Gor'kii. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 723–729, November–December, 1989.  相似文献   

20.
Lobster olfactory genomics   总被引:2,自引:1,他引:1  
Lobsters have numerous adaptive specializations of the olfactorysystem that make them especially suitable model organisms forthe study of olfaction. Recent work using genomics and physiologicalgenomics to study the lobster olfactory organ extends the advantagesof their use further. A subtracted cDNA library from the maturezone of the olfactory organ and 3 physiological genomics experimentshave helped identify numerous functionally interesting genes.These include specific markers of 3 cell types that previouslycould be discriminated only in anatomical sections, plus a markerof reactive epithelial cells at sites of cellular proliferationfor both the normal ongoing replacement of olfactory tissueand the regeneration of damaged olfactory tissue. The approacheswere instrumental in the discovery of a new exocrine gland,the aesthetasc tegumental gland, which is linked to groomingand the prevention of fouling of the olfactory aesthetasc setae.They also suggest a previously unknown endocrine or paracrinefunction performed by auxiliary cells of the olfactory aesthetascsensory units. Other discoveries include candidates for geneproducts involved in olfactory transduction, presynaptic modulationof olfactory neuron axons by ionotropic receptors, and neuromodulationof both the olfactory sensory neurons and the interneurons inthe olfactory lobe of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号