首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

2.
Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m?2 year?1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m?2 year?1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m?2 year?1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m?2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.  相似文献   

3.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

4.
Export of dissolved organic carbon (DOC) from grassland ecosystems can be an important C flux which directly affects ecosystem C balance since DOC is leached from the soil to the groundwater. DOC fluxes and their controlling factors were investigated on two grassland sites with similar climatic conditions but different soil types (Vertisol vs. Arenosol) for a 2.5-year period. Parts of both grasslands were disturbed by deep ploughing during afforestation. Contrary to what was expected, ploughing did not increase DOC export but surface soil DOC concentrations decreased by 28% (Vertisol) and 14% (Arenosol). DOC flux from the soil profile was negatively influences by the clay content of the soil with seven times larger DOC export in the clay-poor Arenosol (55 kg C ha?1 a?1) than in the clay-rich Vertisol (8 kg C ha?1 a?1). At the Arenosol site, highest DOC concentrations were measured in late summer, whereas in the Vertisol there was a time lag of several months between surface and subsoil DOC with highest subsoil DOC concentrations during winter season. DOC export was not correlated with soil organic carbon stocks. Large differences in 14C concentrations of 22–40 pMC between soil organic carbon and DOC in the subsoil indicated that both C pools are largely decoupled. We conclude that DOC export at both sites is not controlled by the vegetation but by physicochemical parameters such as the adsorption capacity of soil minerals and the water balance of the ecosystem. Only in the acidic sandy Arenosol DOC export was a significant C flux of about 8% of net ecosystem production.  相似文献   

5.
Gross primary productivity (GPP) of phytoplankton and planktonic respiration (PR) (i.e., planktonic metabolism) are critical pathways for carbon transformation in many aquatic ecosystems. In inland floodplain wetlands with variable inundation regimes, quantitative measurements of GPP and PR are rare and their relationships with wetland environmental conditions are largely unknown. We measured PR and the GPP of phytoplankton using light and dark biological oxygen demand bottles in open waters of channel and non-channel floodplain habitats of inland floodplain wetlands of southeast Australia that had been inundated by environmental water. Overall, GPP varied from 3.7 to 405.5 mg C m?3 h?1 (mean ± standard error: 89.4 ± 9.2 mg C m?3 h?1, n = 81), PR from 1.5 to 251.6 mg C m?3 h?1 (43.2 ± 5.6 mg C m?3 h?1, n = 81), and GPP/PR from 0.2 to 15.6 (3.0 ± 0.3, n = 81). In terms of wetland environmental conditions, total nitrogen (TN) ranged from 682.0 to 14,700.0 mg m?3 (mean ± standard error: 2,643.0 ± 241.6 mg m?3, n = 81), total phosphorus (TP) from 48.0 to 1,405.0 mg m?3 (316.8 ± 31.4 mg m?3, n = 81), and dissolved organic carbon (DOC) from 1.9 to 46.3 g m?3 (22.0 ± 1.6 g m?3, n = 81). Using ordinary least-squares multiple regression analyses, the rates of GPP and PR, and their ratio (GPP/PR) were modeled as a function of TN, TP, and DOC that had been measured concomitantly. The “best” models predicted GPP and GPP/PR ratio in channel habitats as a function of DOC; and GPP, PR, and GPP/PR in non-channel floodplain habitats as a function of TN and/or TP. The models explained between 46 and 74 % of the variance in channel habitats and between 17 and 87 % of the variance in non-channel floodplain habitats. Net autotrophy (mean GPP/PR 3.0) of planktonic metabolism in our work supports the prevailing view that wetlands are a net sink for carbon dioxide. We propose a nutrient-DOC framework, combined with hydrological and geomorphological delineations, to better predict and understand the planktonic metabolism in inland floodplain wetlands.  相似文献   

6.
The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L?1 and DOC concentrations ranged from 0.26 to 5.39 mg C L?1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km?2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year?1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.  相似文献   

7.
This paper represents the first continuous dissolved organic carbon (DOC) record, measured in a stream draining an Atlantic blanket bog in South West Ireland for the calendar year 2007. At 30-min intervals, the DOC concentration was automatically measured using an in-stream spectroanalyser whose variation compared well with laboratory analysed samples taken by a 24-bottle auto-sampler. The concentration of DOC ranged from 2.7 to 11.5 mg L?1 with higher values during the summer and lower values during the winter. A simple linear regression model of DOC concentration versus air temperature of the previous day was found, suggesting that temperature more than discharge was controlling the DOC concentration in the stream. The change in DOC concentration with storm events showed two patterns: (1) in the colder period: the DOC concentration seemed to be independent of changes in stream flow; (2) in the warmer period: the DOC concentration was found to rise with increases in stream flow on some occasions and to decrease with increasing stream flow on other occasions. The annual export of DOC for 2007 was 14.1 (±1.5) g C m?2. This value was calculated using stream discharge data that were determined by continuously recorded measurements of stream height. The flux of DOC calculated with the 30-min sampling was compared with that calculated based on lower sampling frequencies. We found that sampling frequency of weekly or monthly were adequate to calculate the annual flux of DOC in our study site in 2007.  相似文献   

8.
Colored dissolved organic matter (CDOM) absorbs a substantial fraction of photosynthetically active radiation (PAR) in boreal lakes. However, few studies have systematically estimated how this light absorption influences pelagic primary productivity. In this study, 75 boreal lakes spanning wide and orthogonal gradients in dissolved organic carbon (DOC) and total phosphorus (TP) were sampled during a synoptic survey. We measured absorption spectra of phytoplankton pigments, CDOM, and non-algal particles to quantify the vertical fate of photons in the PAR region. Area-specific rates of gross primary productivity (PPA) were estimated using a bio-optical approach based on phytoplankton in vivo light absorption and the light-dependent quantum yield of photochemistry in PSII measured by a PAM fluorometer. Subsequently, we calculated the effects of CDOM, DOC, and TP concentration on PPA. CDOM absorbed the largest fraction of PAR in the majority of lakes (mean 56.3%, range 36.9–76.2%), phytoplankton pigments captured a comparatively minor fraction (mean 6.6%, range 2.2–28.2%). PPA estimates spanned from 45 to 993 mg C m?2 day?1 (median 286 mg C m?2 day?1). We found contrasting effects of CDOM (negative) and TP (positive) on PPA. The use of DOC or CDOM as predictors gave very similar results and the negative effect of these variables on PPA can probably be attributed to shading. A future scenario of increased DOC, which is highly correlated with CDOM in these lakes, might impose negative effects on areal primary productivity in boreal lakes.  相似文献   

9.
Dissolved organic matter (DOM) is considered as a major carbon source in subsoils. As soil water fluxes are highly variable at small scale, and transport versus sorptive retention of DOM is related to water flux and associated contact time with minerals, knowledge of the small scale spatial variability of the dissolved organic carbon (DOC) concentrations and fluxes into the subsoil is decisive for a solid estimation of organic carbon (OC) translocation into the subsoil. Here, we made advantage of novel segmented suction plates (4 × 4 segments, each 36 cm2) to analyze the small scale spatial and temporal variability of DOC transport at 10, 50 and 150 cm depth of three subsoil observatories (approximately 50 m apart) in a sandy Dystric Cambisol under beech in the Grinderwald, 40 km northwest from Hannover, Germany. Water fluxes, DOC concentrations and fluxes as well as the specific UV absorbance (SUVA) at 280 nm were determined in weekly samples from August 2014 to November 2015 for each individual segment. The DOC fluxes decreased with depth (19.6 g C m?2 year?1, 10 cm; 1.2 g C m?2 year?1, 150 cm) and were strongly related to the water fluxes. The SUVA at 280 nm also decreased with depth (0.03 L mg C?1 cm?1, 10 cm; 0.01 L mg C?1 cm?1, 150 cm), indicating a selective retention of aromatic moieties, that was eased with increasing water flux at least in the subsoil. The proportion of temporal fluctuations and small scale variability on the total variance of each parameter where determined by the calculation of intra class correlations. The seasonal heterogeneity and the small scale spatial heterogeneity were identified to be of major importance. The importance of the small scale spatial heterogeneity strongly increased with depth, pointing towards the stability of flow paths and suggesting that at a given substrate hydrological processes rather than physicochemical processes are decisive for the sorptive retention of DOM and the variability of OC accumulation in the subsoil. Our results clearly show the demand of small scale sampling for the identification of processes regarding carbon cycling in the subsoil.  相似文献   

10.
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5‐year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2, CH4 and N2O. We show that short‐term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in‐stream temperature‐dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m?2 yr?1), followed by CO2 evasion (10.0 g C m?2 yr?1). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere–atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change.  相似文献   

11.
Decreases in dissolved organic carbon (DOC) and dissolved oxygen (DO) with increasing depth below the groundwater table are often considered as evidence for aerobic respiration; however, they may reflect mixing of infiltrating water and groundwater. We found that groundwater DOC concentration was on average 0.3 mg C l?1 higher and DO concentration 1.5 mg O2 l?1 lower at recharge sites replenished with stormwater than at reference sites fed by direct infiltration of rain water from the land surface. Groundwater DOC increased and DO decreased with increasing vadose zone thickness (VZT) at both recharge and reference sites. There was no significant interaction between the effects of stormwater infiltration and VZT. Vertical changes in DOC and DO below the groundwater table at recharge sites could account for by simple mixing of infiltrating stormwater and groundwater. Moreover, aquifer sediment respiration (SR) was not significantly higher at recharge sites than at reference sites. However, slow filtration column experiments showed that SR increased significantly with an increasing supply of easily biodegradable DOC. We conclude that the observed reduction in DOC below the groundwater table at recharge sites was essentially due to water mixing rather than biological uptake because of the low biodegradability of the DOC and the short transit time of stormwater in the upper layers of groundwater. Our results highlight the need to distinguish between the effect of hydrological and biological processes on DOC and DO patterns below the groundwater before conclusions are made on the efficiency of groundwater in degrading surface-derived DOC.  相似文献   

12.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

13.
Fluxes of dissolved organic carbon (DOC) and nitrogen (DON) may play an important role for losses of C and N from the soils of forest ecosystems, especially under conditions of high precipitation. We studied DOC and DON fluxes and concentrations in relation to precipitation intensity in a subtropical montane Chamaecyparis obtusa var. formosana forest in Taiwan. Our objective was, to quantify DOC and DON fluxes and to understand the role of high precipitation for DOC and DON export in this ecosystem. From 2005 to 2008 we sampled bulk precipitation, throughfall, forest floor percolates and seepage (60 cm) and analyzed DOC, DON and mineral N concentrations. Average DOC fluxes in the soil were extremely high (962 and 478 kg C ha?1 year?1 in forest floor percolates and seepage, respectively) while DON fluxes were similar to other (sub)tropical ecosystems (16 and 8 kg N ha?1 year?1, respectively). Total N fluxes in the soil were dominated by DON. Dissolved organic C and N concentrations in forest floor percolates were independent of the water flux. No dilution effect was visible. Instead, the pool size of potentially soluble DOC and DON was variable as indicated by different DOC and DON concentrations in forest floor percolates at similar precipitation amounts. Therefore, we hypothesized, that these pools are not likely to be depleted in the long term. The relationship between water fluxes in bulk precipitation and DOC and DON fluxes in forest floor percolates was positive (DOC r = 0.908, DON r = 0.842, respectively, Spearman rank correlation). We concluded, that precipitation is an important driver for DOC and DON losses from this subtropical montane forest and that these DOC losses play an important role in the soil C cycle of this ecosystem. Moreover, we found that the linear relationship between bulk precipitation and DOC and DON fluxes in forest floor percolates of temperate ecosystems does not hold when incorporating additional data on these fluxes from (subtropical) ecosystems.  相似文献   

14.
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

15.
Biometric-based carbon flux measurements were conducted in a pine forest on lava flow of Mt. Fuji, Japan, in order to estimate carbon cycling and sequestration. The forest consists mainly of Japanese red pine (Pinus densiflora) in a canopy layer and Japanese holly (Ilex pedunculosa) in a subtree layer. The lava remains exposed on the ground surface, and the soil on the lava flow is still immature with no mineral soil layer. The results showed that the net primary production (NPP) of the forest was 7.3 ± 0.7 t C ha?1 year?1, of which 1.4 ± 0.4 t C ha?1 year?1 was partitioned to biomass increment, 3.2 ± 0.5 t C ha?1 year?1 to above-ground fine litter production, 1.9 t C ha?1 year?1 to fine root production, and 0.8 ± 0.2 t C ha?1 year?1 to coarse woody debris. The total amount of annual soil surface CO2 efflux was estimated as 6.1 ± 2.9 t C ha?1 year?1, using a closed chamber method. The estimated decomposition rate of soil organic matter, which subtracted annual root respiration from soil respiration, was 4.2 ± 3.1 t C ha?1 year?1. Biometric-based net ecosystem production (NEP) in the pine forest was estimated at 2.9 ± 3.2 t C ha?1 year?1, with high uncertainty due mainly to the model estimation error of annual soil respiration and root respiration. The sequestered carbon being allocated in roughly equal amounts to living biomass (1.4 t C ha?1 year?1) and the non-living C pool (1.5 t C ha?1 year?1). Our estimate of biometric-based NEP was 25 % lower than the eddy covariance-based NEP in this pine forest, due partly to the underestimation of NPP and difficulty of estimation of soil and root respiration in the pine forest on lava flows that have large heterogeneity of soil depth. However, our results indicate that the mature pine forest acted as a significant carbon sink even when established on lava flow with low nutrient content in immature soils, and that sequestration strength, both in biomass and in soil organic matter, is large.  相似文献   

16.
Knowledge on the relative effects of biological activity and precipitation/dissolution of calcium carbonate (CaCO3) in influencing the air-ice CO2 exchange in sea-ice-covered season is currently lacking. Furthermore, the spatial and temporal occurrence of CaCO3 and other biogeochemical parameters in sea ice are still not well described. Here we investigated autotrophic and heterotrophic activity as well as the precipitation/dissolution of CaCO3 in subarctic sea ice in South West Greenland. Integrated over the entire ice season (71 days), the sea ice was net autotrophic with a net carbon fixation of 56 mg C m?2, derived from a sea-ice-related gross primary production of 153 mg C m?2 and a bacterial carbon demand of 97 mg C m?2. Primary production contributed only marginally to the TCO2 depletion of the sea ice (7–25 %), which was mainly controlled by physical export by brine drainage and CaCO3 precipitation. The net biological production could only explain 4 % of this sea-ice-driven CO2 uptake. Abiotic processes contributed to an air-sea CO2 uptake of 1.5 mmol m?2 sea ice day?1, and dissolution of CaCO3 increased the air-sea CO2 uptake by 36 % compared to a theoretical estimate of melting CaCO3-free sea ice. There was a considerable spatial and temporal variability of CaCO3 and the other biogeochemical parameters measured (dissolved organic and inorganic nutrients).  相似文献   

17.
Soil carbon pools are an essential but poorly understood factor in heterotrophic soil respiration on forested landscapes. We hypothesized that the topographically regulated distribution of dissolved organic carbon (DOC) is the dominant factor contributing to soil CO2 efflux. We tested this hypothesis by monitoring soil CO2 efflux and sampling particulate and dissolved substrates (both mobile DOC in soil solution and DOC potentially sorbed onto Fe and Al oxyhydroxides) in surface (freshly fallen leaves (FFL) and forest floor) and near-surface (A-horizon or top 10 cm of peat) soils along three hillslope transects (15°, 25° and 35° slopes) that included upland (crest, shoulder, backslope, footslope, and toeslope) and wetland (periphery and central) topographic features during the snowfree season within a sugar maple forest. We observed that median snowfree season soil CO2 efflux ranged from <1 to >5 μmol CO2 m?2 s?1. Substrates in the near-surface mineral soil were most strongly related to median soil CO2 efflux, and when combined mobile DOC and sorbed DOC together explained 78% of the heterogeneity in median soil CO2 efflux (p < 0.001). When the carbon pool in FFL (an important source of DOC to the forest soils) was included, the explanation of variance increased to 81% (p < 0.001). Topographically regulated processes created high concentrations of mobile DOC at the footslope, and high concentrations of sorbed DOC further downslope at the toeslope, forming distinct traps of DOC that can become hotspots for soil CO2 production. A reduction in the uncertainty of forest carbon budgets can be achieved by taking into consideration the topographic regulation of the substrates contributing to soil CO2 efflux.  相似文献   

18.
Current estimates of CO2 outgassing from Amazonian rivers and streams have considerable uncertainty since they are based on limited-time surveys of pCO2 measurements along the Amazon mainstem and mouths of major tributaries, using conservative estimates of gas exchange velocities. In order to refine basin-scale CO2 efflux estimates from Amazonian rivers, we present a long time (5-year) dataset of direct measurements of CO2 fluxes, gas transfer velocities and pCO2 measurements in seven representative rivers of the lowland Amazon basin fluvial network, six non-tidal (Negro, Solimões, Teles Pires, Cristalino, Araguaia and Javaés) and one tidal river (Caxiuanã), with sizes ranging from 4th to 9th order. Surveys were conducted from January 2006 to December 2010, in a total of 389 campaigns covering all stages of their hydrographs. CO2 fluxes and gas transfer velocities (k) were measured using floating chambers and pCO2 was measured simultaneously by headspace extraction followed by gas chromatography analysis. Results show high CO2 flux rate variability among rivers and hydrograph stages, ranging from ?0.8 to 15.3 μmol CO2 m?2 s?1, with unexpected negative fluxes in clear-water rivers during low waters. Non-tidal rivers showed marked seasonal CO2 flux patterns, with significantly higher exchange during high waters. Seasonality was modulated by pCO2, which was positive and strongly correlated with discharge. In these rivers k was well correlated with wind speed, which allowed the use of wind data to model k. We estimate a release of 360 ± 60 Tg C year?1 from Amazonian rivers and streams within a 1.47 million km2 quadrant in the central lowland Amazon. Extrapolating these values to the basin upstream of Óbidos, results in an outgassing of 0.8 Pg C to the atmosphere each year. Our results are a step forward in achieving more accurate gas emission values for Amazonian rivers and their role in the annual carbon budget of the Amazon basin.  相似文献   

19.
Studies conducted across northern Europe and North America have shown increases in dissolved organic carbon (DOC) in aquatic systems in recent decades. While there is little consensus as to the exact mechanisms for the increases in DOC, hypotheses converge on such climate change factors as warming, increased precipitation variability, and changes in atmospheric deposition. In this study, we tested the effects of warming on peat porewater composition by actively warming a peatland with infrared lamps mounted 1.24 m above the peat surface for 3 years. Mean growing season peat temperatures in the warmed plots (n = 5) were 1.9 ± 0.4 °C warmer than the control plots at 5 cm depth (t statistic = 5.03, p = 0.007). Mean porewater DOC concentrations measured throughout the growing season were 15 % higher in the warmed plots (73.4 ± 3.2 mg L?1) than in the control plots (63.7 ± 2.1 mg L?1) at 25 cm (t = 4.69, p < 0.001). Furthermore, DOC from the warmed plots decayed nearly twice as fast as control plot DOC in laboratory incubations, and exhibited lower aromaticity than control plot porewater (reduction in SUVA254 in heated plots compared with control plots). Dissolved organic nitrogen (DON) concentrations tracked DOC patterns as expected, but the amount of dissolved N per unit C decreased with warming. Previous work has shown that warming increased net primary production at this site, and together with measured increases in the activities of chitinases and glucosidases we suggest that the increased DOC concentrations observed with warming were derived in part from microbial-plant interactions in the rhizosphere. We also detected more nitrogen containing compounds with higher double bond equivalents (DBE) unique to the warmed plots, within the pool of biomolecules able to deprotonate (16 % of all compounds identified using ultrahigh resolution ion electrospray mass spectrometry); we suggest these compounds could be the products of increased plant, microbial, and enzyme activity occurring with warming. With continued warming in peatlands, an increase in relatively labile DOC concentrations could contribute to dissolved exports of DOC in runoff, and would likely contribute to the pool of efficient electron donors (and acceptors) in the production of CO2 and CH4 in terrestrial and aquatic environments.  相似文献   

20.
The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha?1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 and 15 °C for 37 weeks. Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate-induced soil warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil temperature was the strongest control on SOC turnover, with wetland type and soil depth less important in controlling CO2 flux and extractable DOC. The high temperature incubation increased average CO2 yield by ~40 and ~25% for DOC suggesting PCTR soils contain a sizeable pool of readily biodegradable SOC that can be mineralized to DOC and CO2 with future climate warming. Fluxes of CO2 were positively correlated to both extractable DOC and percent bioavailable DOC during the last few months of the incubation suggesting mineralization of SOC to DOC is a strong control of soil respiration rates. Whether the net result is increased export of either carbon form will depend on the balance between the land to water transport of DOC and the ability of soil microbial communities to mineralize DOC to CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号