首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
组织氧合作用和光敏剂应用在疾病诊治中都有着重要的作用,因此其实时在体无损检测很有意义。光动力疗法涉及光敏剂、光和氧分子三大要素,其疗效受组织氧合作用影响。本文对光声成像(PAI)、光声寿命成像(PALI)和多光谱光声层析成像(MSOT)等光声成像技术在光动力疗法的研究和应用中的使用现状进行了综述。对相关设备系统在检测光敏剂、组织氧分压和微血管损伤等方面的应用原理和技术分别进行了介绍,并总结了这些技术的应用前景。  相似文献   

2.
3.
Reliably differentiating brown adipose tissue (BAT) from other tissues using a non-invasive imaging method is an important step toward studying BAT in humans. Detecting BAT is typically confirmed by the uptake of the injected radioactive tracer 18F-Fluorodeoxyglucose (18F-FDG) into adipose tissue depots, as measured by positron emission tomography/computed tomography (PET-CT) scans after exposing the subject to cold stimulus. Fat-water separated magnetic resonance imaging (MRI) has the ability to distinguish BAT without the use of a radioactive tracer. To date, MRI of BAT in adult humans has not been co-registered with cold-activated PET-CT. Therefore, this protocol uses 18F-FDG PET-CT scans to automatically generate a BAT mask, which is then applied to co-registered MRI scans of the same subject. This approach enables measurement of quantitative MRI properties of BAT without manual segmentation. BAT masks are created from two PET-CT scans: after exposure for 2 hr to either thermoneutral (TN) (24 °C) or cold-activated (CA) (17 °C) conditions. The TN and CA PET-CT scans are registered, and the PET standardized uptake and CT Hounsfield values are used to create a mask containing only BAT. CA and TN MRI scans are also acquired on the same subject and registered to the PET-CT scans in order to establish quantitative MRI properties within the automatically defined BAT mask. An advantage of this approach is that the segmentation is completely automated and is based on widely accepted methods for identification of activated BAT (PET-CT). The quantitative MRI properties of BAT established using this protocol can serve as the basis for an MRI-only BAT examination that avoids the radiation associated with PET-CT.  相似文献   

4.
Objective: To investigate the response of the brains of women to the ingestion of a meal. Research Methods and Procedures: We used measures of regional cerebral blood flow (rCBF), a marker of neuronal activity, by positron emission tomography to describe the functional anatomy of satiation, i.e., the response to a liquid meal in the context of extreme hunger (36‐hour fast) in 10 lean (BMI ≤ 25 kg/m2; 32 ± 10 years old, 61 ± 7 kg; mean ± SD) and 12 obese (BMI ≥ 35 kg/m2; 30 ± 7 years old, 110 ± 14 kg) women. Results: In lean and obese women, satiation produced significant increases in rCBF in the vicinity of the prefrontal cortex (p < 0.005). Satiation also produced significant decreases in rCBF in several regions including the thalamus, insular cortex, parahippocampal gyrus, temporal cortex, and cerebellum (in lean and obese women), and hypothalamus, cingulate, nucleus accumbens, and amygdala (in obese women only; all p < 0.005). Compared with lean women, obese women had significantly greater increases in rCBF in the ventral prefrontal cortex and had significantly greater decreases in the paralimbic areas and in areas of the frontal and temporal cortex. Discussion: This study indicates that satiation elicits differential brain responses in obese and lean women. It also lends additional support to the hypothesis that the paralimbic areas participate in a central orexigenic network modulated by the prefrontal cortex through feedback loops.  相似文献   

5.
Brown adipose tissue (BAT) differs from white adipose tissue (WAT) by its discrete location and a brown-red color due to rich vascularization and high density of mitochondria. BAT plays a major role in energy expenditure and non-shivering thermogenesis in newborn mammals as well as the adults 1. BAT-mediated thermogenesis is highly regulated by the sympathetic nervous system, predominantly via β adrenergic receptor 2, 3. Recent studies have shown that BAT activities in human adults are negatively correlated with body mass index (BMI) and other diabetic parameters 4-6. BAT has thus been proposed as a potential target for anti-obesity/anti-diabetes therapy focusing on modulation of energy balance 6-8. While several cold challenge-based positron emission tomography (PET) methods are established for detecting human BAT 9-13, there is essentially no standardized protocol for imaging and quantification of BAT in small animal models such as mice. Here we describe a robust PET/CT imaging method for functional assessment of BAT in mice. Briefly, adult C57BL/6J mice were cold treated under fasting conditions for a duration of 4 hours before they received one dose of 18F-Fluorodeoxyglucose (FDG). The mice were remained in the cold for one additional hour post FDG injection, and then scanned with a small animal-dedicated micro-PET/CT system. The acquired PET images were co-registered with the CT images for anatomical references and analyzed for FDG uptake in the interscapular BAT area to present BAT activity. This standardized cold-treatment and imaging protocol has been validated through testing BAT activities during pharmacological interventions, for example, the suppressed BAT activation by the treatment of β-adrenoceptor antagonist propranolol 14, 15, or the enhanced BAT activation by β3 agonist BRL37344 16. The method described here can be applied to screen for drugs/compounds that modulate BAT activity, or to identify genes/pathways that are involved in BAT development and regulation in various preclinical and basic studies.  相似文献   

6.
We present a method for comparing the uptake of the brain''s two key energy substrates: glucose and ketones (acetoacetate [AcAc] in this case) in the rat. The developed method is a small-animal positron emission tomography (PET) protocol, in which 11C-AcAc and 18F-fluorodeoxyglucose (18F-FDG) are injected sequentially in each animal. This dual tracer PET acquisition is possible because of the short half-life of 11C (20.4 min). The rats also undergo a magnetic resonance imaging (MRI) acquisition seven days before the PET protocol. Prior to image analysis, PET and MRI images are coregistered to allow the measurement of regional cerebral uptake (cortex, hippocampus, striatum, and cerebellum). A quantitative measure of 11C-AcAc and 18F-FDG brain uptake (cerebral metabolic rate; μmol/100 g/min) is determined by kinetic modeling using the image-derived input function (IDIF) method. Our new dual tracer PET protocol is robust and flexible; the two tracers used can be replaced by different radiotracers to evaluate other processes in the brain. Moreover, our protocol is applicable to the study of brain fuel supply in multiple conditions such as normal aging and neurodegenerative pathologies such as Alzheimer''s and Parkinson''s diseases.  相似文献   

7.
Acute liver failure (ALF) is frequently complicated by the development of brain edema that can lead to intracranial hypertension and severe brain injury. Neuroimaging techniques allow a none-invasive assessment of brain tissue and cerebral hemodynamics by means of transcranial Doppler ultrasonography, magnetic resonance and nuclear imaging with radioligands. These methods have been very helpful to unravel the pathogenesis of this process and have been applied to patients and experimental models. They allow monitoring the outcome of patients with ALF and neurological manifestations. The increase in brain water can be detected by observing changes in brain volume and disturbances in diffusion weighted imaging. Neurometabolic changes are detected by magnetic resonance spectroscopy, which provides a pattern of abnormalities characterized by an increase in glutamine and a decrease in myo-inositol. Disturbances in cerebral blood flow are depicted by SPECT or PET and can be monitored and the bedside by assessing the characteristics of the waveform provided by transcranial Doppler ultrasonography. Neuroimaging methods, which are rapidly evolving, will undoubtedly lead to future diagnostic and therapeutic progress that could be very helpful for patients with ALF.  相似文献   

8.
Acute liver failure (ALF) is frequently complicated by the development of brain edema that can lead to intracranial hypertension and severe brain injury. Neuroimaging techniques allow a none-invasive assessment of brain tissue and cerebral hemodynamics by means of transcranial Doppler ultrasonography, magnetic resonance and nuclear imaging with radioligands. These methods have been very helpful to unravel the pathogenesis of this process and have been applied to patients and experimental models. They allow monitoring the outcome of patients with ALF and neurological manifestations. The increase in brain water can be detected by observing changes in brain volume and disturbances in diffusion weighted imaging. Neurometabolic changes are detected by magnetic resonance spectroscopy, which provides a pattern of abnormalities characterized by an increase in glutamine and a decrease in myo-inositol. Disturbances in cerebral blood flow are depicted by SPECT or PET and can be monitored and the bedside by assessing the characteristics of the waveform provided by transcranial Doppler ultrasonography. Neuroimaging methods, which are rapidly evolving, will undoubtedly lead to future diagnostic and therapeutic progress that could be very helpful for patients with ALF.  相似文献   

9.

Introduction

Hippocampal sclerosis is the most common lesion in patients with mesial temporal lobe epilepsy. Recently, there has been growing evidence on the involvement of mitochondria also in sporadic forms of epilepsy. In addition, it has been increasingly argued that mitochondrial dysfunction has an important role in epileptogenesis and seizure generation in temporal lobe epilepsy. Although mtDNA polymorphisms have been identified as potential risk factors for neurological diseases, the link between homoplasmy and heteroplasmy within tissues is not clear. We investigated whether mitochondrial DNA (mtDNA) polymorphisms are involved in a case report of a patient with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS).

Design

We report the whole genome mtDNA deep sequencing results and clinical features of a 36-year-old woman with MTLE-HS. We used pyrosequencing technology to sequence a whole mitochondrial genome isolated from six different regions of her brain and blood. To assess the possible role of mitochondrial DNA variations in affected tissues, we compared all specimens from different regions of the hippocampus and blood.

Results

In total, 35 homoplasmic and 18 heteroplasmic variations have been detected in 6 different regions of the hippocampus and in blood samples. While the samples did not display any difference in homoplasmic variations, it has been shown that hippocampus regions contain more heteroplasmic variations than blood. The number of heteroplasmic variations was highest in the CA2 region of the brain and accumulated in ND2, ND4 and ND5 genes. Also, dentate and subiculum regions of the hippocampus had similar heteroplasmic variation profiles.

Discussion

We present a new rare example of parallel mutation at 16223 position. Our case suggests that defects in mitochondrial function might be underlying the pathogenesis of seizures in temporal lobe epilepsy.  相似文献   

10.
Contributions of functional imaging to understanding parkinsonian symptoms   总被引:2,自引:0,他引:2  
Brain imaging experiments identify plausible circuits involved in the genesis of the cardinal symptoms of Parkinson's disease. Akinesia is linked to hypoactivation of the supplementary motor area secondary to insufficient thalamocortical facilitation. Overactivation in other areas such as the lateral premotor and parietal cortex probably represents a compensatory mechanism. Bradykinesia is associated with abnormal functioning within intrinsic basal ganglia circuitry for scaling movements to appropriate magnitude. Parkinson's disease tremor is localized to pontine- and mesencephalic-cerebellar-thalamic circuits, with abnormalities of both dopamine and serotonin neurotransmission. There is a need to understand the anatomic intersections where information is shared across these circuits.  相似文献   

11.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   

12.
The supplementary motor area, although traditionally defined as a single motor area, is not viewed as including at least three different areas that can be distinguished anatomically and physiologically. The differential use of these three areas for various motor behaviors has been the subject of recent studies that are beginning to provide novel concepts of the functional differentiation of each area.  相似文献   

13.
Recent studies have provided new insights into the visuomotor functions of the dorsal and ventral regions of the lateral pre-motor cortex. Anatomical and physiological investigations in non-human primates have demonstrated that these regions have differing patterns of cortical connectivity and distinctive neuronal responses. Brain-imaging techniques and lesion studies have begun to probe the functions of homologous regions in humans.  相似文献   

14.
《Endocrine practice》2022,28(12):1253-1269
Pheochromocytomas and paragangliomas continue to be defined by significant morbidity and mortality despite their several recent advances in diagnosis, localization, and management. These adverse outcomes are largely related to mass effect as well as catecholamine-induced hypertension, tachyarrhythmias and consequent target organ damage, acute coronary syndromes, and strokes (ischemic and hemorrhagic stroke). Thus, a proper understanding of the physiology and pathophysiology of these tumors and recent advances are essential to affording optimal care. These major developments largely include a redefinition of metastatic behavior, a novel clinical categorization of these tumors into 3 genetic clusters, and an enhanced understanding of catecholamine metabolism and consequent specific biochemical phenotypes. Current advances in imaging of these tumors are shifting the paradigm from poorly specific anatomical modalities to more precise characterization of these tumors using the advent and development of functional imaging modalities. Furthermore, recent advances have revealed new molecular events in these tumors that are linked to their genetic landscape and, therefore, provide new therapeutic platforms. A few of these prospective therapies translated into new clinical trials, especially for patients with metastatic or inoperable tumors. Finally, outcomes are ever-improving as patients are cared for at centers with cumulative experience and well-established multidisciplinary tumor boards. In parallel, these centers have supported national and international collaborative efforts and worldwide clinical trials. These concerted efforts have led to improved guidelines collaboratively developed by healthcare professionals with a growing expertise in these tumors and consequently improving detection, prevention, and identification of genetic susceptibility genes in these patients.  相似文献   

15.
《Endocrine practice》2023,29(2):141-147
ObjectiveTo review the epidemiology, presentation, diagnosis, and management of head and neck paragangliomas.MethodsA literature review of english language papers with focus on most current literature.ResultsParagangliomas (PGLs) are a group of neuroendocrine tumors that arise in the parasympathetic or sympathetic ganglia. Head and neck PGLs (HNPGLs) comprise 65% to 70% of all PGLs and account for 0.6% of all head and neck cancers. The majority of HNPGLs are benign, and 6% to 19% of all HNPGLs develop metastasis outside the tumor site and significantly compromise survival. PGLs can have a familial etiology with germline sequence variations in different susceptibility genes, with the gene encoding succinate dehydrogenase being the most common sequence variation, or they can arise from somatic sequence variations or fusion genes. Workup includes biochemical testing to rule out secretory components, although it is rare in HNPGLs. In addition, imaging modalities, such as computed tomography and magnetic resonance imaging, help in monitoring in surgical planning. Functional imaging with DOTATATE-positron emission tomography, 18F-fluorodeoxyglucose, or 18F-fluorohydroxyphenylalanine may be necessary to rule out sites of metastases. The management of HNPGLs is complex depending on pathology, location, and aggressiveness of the tumor. Treatment ranges from observation to resection to systemic treatment. Similarly, the prognosis ranges from a normal life expectancy to a 5-year survival of 11.8% in patients with distant metastasis.ConclusionOur review is a comprehensive summary of the incidence, mortality, pathogenesis, presentation, workup and management of HNPGLs.  相似文献   

16.
ObjectiveThe aim of this case-based clinical review was to provide a practical approach for clinicians regarding the management of patients with immune checkpoint inhibitor (ICI)-mediated endocrinopathies.MethodsA literature search of PubMed, Embase, and Scopus was conducted using appropriate keywords. The discussions and strategies for the diagnosis and management of ICI-mediated endocrinopathies are based on evidence available from prospective, randomized clinical studies; cohort studies; cross-sectional studies; case-based studies; and an expert consensus.ResultsImmunotherapy with ICIs has transformed the treatment landscape of diverse types of cancers but frequently results in immune-mediated endocrinopathies that can cause acute and persistent morbidity and, rarely, death. The patterns of endocrinopathies differ between the inhibitors of the cytotoxic T-lymphocyte antigen 4 and programmed cell death protein 1 or programmed cell death protein 1 ligand pathways but most often involve the thyroid and pituitary glands. The less common but important presentations include insulin-deficient diabetes mellitus, primary adrenal insufficiency, primary hypoparathyroidism, central diabetes insipidus, primary hypogonadism, and pancreatitis, with or without subsequent progression to diabetes mellitus or exocrine insufficiency.ConclusionIn recent years, with increasing numbers of patients with cancer being treated with ICIs, more clinicians in a variety of specialties have been called upon to diagnose and treat ICI-mediated endocrinopathies. Herein, we reviewed case scenarios of various clinical manifestations and emphasized the need for a high index of clinical suspicion by all clinicians caring for these patients, including endocrinologists, oncologists, primary care providers, and emergency department physicians. We also provided diagnostic and therapeutic approaches for ICI-induced endocrinopathies and proposed that patients on ICI therapy be evaluated and treated by a multidisciplinary team in collaboration with endocrinologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号