首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Mammalian brain has a β-carboline 2N-methyltransferase activity that converts β-carbolines, such as norharman and harman, into 2N-methylated β-carbolinium cations, which are structural and functional analogs of the Parkinsonian-inducing toxin 1-methyl-4-phenylpyridinium cation (MPP+). The identity and physiological function of this β-carboline 2N-methylation activity was previously unknown. We report pharmacological and biochemical evidence that phenylethanolamine N-methyltransferase (EC 2.1.1.28) has β-carboline 2N-methyltransferase activity. Specifically, purified phenylethanolamine N-methyltransferase (PNMT) catalyzes the 2N-methylation (21.1 pmol/h per unit PNMT) of 9-methylnorharman, but not the 9N-methylation of 2-methylnorharmanium cation. LY134046, a selective inhibitor of phenylethanolamine N-methyltransferase, inhibits (IC50 1.9 μM) the 2N-methylation of 9-methylnorharman, a substrate for β-carboline 2N-methyltransferase. Substrates of phenylethanolamine N-methyltransferase also inhibit β-carboline 2N-methyltransferase activity in a concentration-dependent manner. β-Carboline 2N-methyltransferase activity (43.7 pmol/h/mg protein) is present in human adrenal medulla, a tissue with high phenylethanolamine N-methyltransferase activity.

We are investigating the potential role of N-methylated β-carbolinium cations in the pathogenesis of idiopathic Parkinson’s disease. Presuming that phenylethanolamine N-methyltransferase activity forms toxic 2N-methylated β-carbolinium cations, we propose a novel hypothesis regarding Parkinson’s disease—a hypothesis that includes a role for phenylethanolamine N-methyltransferase-catalyzed formation of MPP+-like 2N-methylated β-carbolinium cations.  相似文献   


2.
Topsoil microorganisms were screened for their acceptability of the standard substrate N,N-dimethylaniline in bacterial ‘whole-cell’ incubations. One bacterium converted N,N-dimethylaniline and was identified as Bacillus megaterium by 16S rDNA analysis and DNA/DNA-hybridization. In contrast to the well-known C-hydroxylation by liver microsomes, leading to p-hydroxylation, B. megaterium formed o- and p-monohydroxylated products, i.e. N,N-dimethyl-2-aminophenol and N,N-dimethyl-4-aminophenol, both identified by gas chromatography–mass spectrometry (GC–MS) using synthesized reference compounds. The observed hydroxylation showed slight regioselectivity in favour of the o-hydroxylated product. Two further substrates, N,N-diethylaniline and N-ethyl-N-methylaniline, were also successfully biohydroxylated by B. megaterium with corresponding regioselectivity. Interestingly, aniline, known to be transformed easily by cytochrome P-450meg into p-aminophenol, was not accepted as substrate.  相似文献   

3.
The interaction between Ac-AMP2, a lectin-like small protein with antimicrobial and antifungal activity isolated from Amaranthus caudatus, and N,N′,N″-triacetyl chitotriose was studied using 1H NMR spectroscopy. Changes in chemical shift and line width upon increasing concentration of N,N′,N″-triacetyl chitotriose to Ac-AMP2 solutions at pH 6.9 and 2.4 were used to determine the interaction site and the association constant Ka. The most pronounced shifts occur mainly in the C-terminal half of the sequence. They involve the aromatic residues Phe18, Tyr20 and Tyr27 together with their surrounding residues, as well as the N-terminal Val-Gly-Glu segment. Several NOEs between Ac-AMP2 and the N,N′,N″-triacetyl chitotriose resonances are reported.  相似文献   

4.
The scope of the biotransformation of 2-pyridone- and 2-quinolone-derived compounds by recombinant whole-cells of E. coli JM109(DE3)(pDTG141) expressing the naphthalene-dioxygenase system from Pseudomonas sp. NCIB 9816-4 was explored, using a series of N- and C-substituted derivatives. Among them, only the N-methyl substituted compounds were good substrates for a regio- and stereoselective dihydroxylation reaction leading to cis-dihydroxydihydro pyridone derivatives, corresponding to the general pattern expected for this enzyme. In the absence of dihydroxylation reactions, N-dealkylations and monohydroxylations on external methyl groups were observed.  相似文献   

5.
A novel one-pot three-component condensation reaction of an aldehyde, β-ketoester and 2-aminobenzimidazole or 2-aminobenzothiazole in 1,1,3,3-N,N,N′,N′-tetramethylguanidinium trifluoroacetate as an ionic liquid is described. During the course of this reaction 4H-pyrimido[2,1-b]benzimidazoles or 4H-pyrimido[2,1-b]benzothiazoles are formed in high yields at 100 °C. The ionic liquid can be recovered conveniently and reused efficiently.  相似文献   

6.
N-Lauroyl-β-amino propionitrile is an intermediate for synthesis of sodium N-lauroyl-β-alanine, an antimicrobial surfactant. We provide a novel process for enzymatic synthesis of N-lauroyl-β-amino propionitrile, using a cascade connection of an enzyme packed bed reactor (EPBR) with a crystallization separator for on-line separation. The substrate solution was fed to the reactor inlet. High-purity crystal product was obtained from the separator outlet with a yield of 91.7% under the optimum conditions. The immobilized lipase can be utilized repeatedly. The solvent and unreacted substrates were recovered and reused on-line.  相似文献   

7.
Pine needles and their carboxymethyl forms were functionalized by network formation with 2-acrylamido-2-methylpropanesulphonic acid (AAmPSA) in the presence of N,N-methylene bisacrylamide. N-Tetramethylethylene diamine and ammonium persulfate were used as accelerator-initiator systems to prepare these hydrogels. The hydrogels were characterized by FTIR, SEM, and nitrogen analysis and for water uptake capacities before and after metal ion sorption with a view to evaluating their use in the removal of toxic ionic species from waste water. A detailed study of Cr6+ adsorption was carried out as a function of time, temperature, pH, and ionic strength. The thermodynamic parameters of adsorption such as ΔH0, ΔS0, and ΔG0 have been evaluated to understand the underlying mechanism of adsorption. In order to understand their reusability in possible technological applications, biodegradability of these hydrogels and their precursors was studied.  相似文献   

8.
Celiac disease (CD) is characterized by a permanent intolerance to wheat gliadin and related proteins in genetically susceptible individuals. It is generally considered that CD is an immuno-mediated multifactorial disease, but a direct cytotoxic activity of gliadin-derived peptides (GL-PT) on intestinal mucosa cannot be excluded. Many efforts have been done to identify possible antagonists of this direct toxicity and several studies indicated that mannan and oligomers of N-acetylglucosamine, [N,N′-diacetylchitobiose (GLcNAc)2 and N,N′,N″;-triacetylchitotriose (GLcNAc)3], could be very promising candidates.

In the present study we investigated the ability of mannan, (GLcNAc)2 and (GLcNAc)3 to interfere with some toxic effects exerted by GL-PT, as cell growth and viability impairment, increased intestinal permeability and cellular inflammation, on a clone of the human intestinal Caco-2 cell line, Caco-2/TC7, expressing a more homogeneous population than the parental one.

Our present results demonstrate that mannan, among the three molecules investigated, is the most suitable to counteract the adverse effects induced by GL-PT on Caco-2/TC7 cells, for all the parameters considered in this study.  相似文献   


9.
N-Tolylsulfonyl- and N-butyloxycarbonyl-protected β-amino nitriles were prepared to study the effect of the N-protecting group on the biotransformation of the β-amino nitriles to the corresponding β-amino amides and acids. The bioconversions were carried out by using whole cells of Rhodococcus sp. R312 and Rhodococcus erythropolis NCIMB 11540. The bioconversion products of five-membered carbocyclic nitriles were mainly the respective acids whereas the carbocyclic six-membered nitriles were accumulated at the stage of the amide. Benefits of the enzymatic compared with the chemical hydrolysis of β-amino nitriles are the mild reaction conditions for the transformation of the nitrile group in the presence of acid or base labile N-protecting groups. In the present work we concentrated on this chemoselectivity of the biotransformation rather than its potential enantioselectivity, which will be subject of future investigations. Thus, some new compounds were prepared: (±)-(2-cyano-cyclohexyl) carbamic acid tert-butyl ester (4a), (±)-(2-carbamoyl-cyclopentyl) carbamic acid tert-butyl ester (3b) and (±)-(2-carbamoyl-cyclohexyl) carbamic acid tert-butyl ester (4b).  相似文献   

10.
Hydrogels of N-acetyl and N-propionylchitosans were prepared form aqueous solutions of sodium N-acylchitosan salts (alkaline N-acylchitosans) and sodium N-acylchitosan xanthate [O-(sodium thio)thiocarbonyl N-acylchitosan], respectively, by standing at room temperature and on heating. Novel hydrogels of N-acetylchitosan-cellulose and N-propionylchitosan-cellulose composites were also prepared from sodium cellulose xanthate [O-(sodiumthio)thiocarbonyl cellulose] solutions mixed with sodium N-acylchitosan salts and with sodium N-acylchitosan xanthates, respectively.  相似文献   

11.
The inhibition of cyclooxygenase enzymes plays an important role in the treatment of inflammatory diseases. N-Hydroxy-4-(5-methyl-3-phenylisoxazol-4-yl)benzenesulfonamide (3)—a primary metabolite of the highly selective COX-2 inhibitor valdecoxib—was synthesized and stabilized as its monohydrate (3a·H2O). The anti-inflammatory properties of 3a·H2O were investigated in carrageenan-induced edema and in acute and chronic pain models. Based on our biological investigation, we conclude that N-hydroxy-valdecoxib 3a is an active metabolite of valdecoxib.  相似文献   

12.
P.M. Vignais  P.V. Vignais 《BBA》1973,325(3):357-374

1. 1. Fuscin, a mould metabolite, is a colored quinonoid compound which reacts readily with −SH groups to give colorless addition derivatives.

2. 2. Binding of fuscin to mitochondria has been monitored spectrophotometrically. Fuscin binding is prevented by −SH reagents such as N-ehylmaleimide, N-Methylmaleimide, mersalyl or p-chloromercuribenzoate. Conversely, fuscin prevents the binding of −SH reagents as shown with N-[14C]ethylmaleimide. Once bound to mitochondria, fuscin is not removable by washing of mitochondria.

3. 3. High affinity-fuscin binding sites (Kd = 1 μM, N = 4–8 nmoles/mg protein) are present in whole mitochondria obtained from rat heart, rat liver, pigeon heart or yeast (Candida utilis). They are lost upon sonication but are still present in digitonin inner membrane + matrix vesicles. On the other hand, lysis of mitochondria by Triton X-100 does not increase the number of high affinity binding sites indicating that all these sites are accessible to fuscin in whole mitochondria. The number of fuscin high affinity sites appears to correlate with the glutathione content of mitochondrial preparations.

4. 4. Fuscin as well as N-ethylmaleimide and avenaciolide are penetrant SH-reagents;

5. 5. Fuscin interferes with the ADP-stimulated respiration of mitochondria on NAD-linked substrates, several functions of the mitochondrial respiratory apparatus being inhibited by fuscin in a non-competitive manner, but to various extents: (a) The electron transfer chain (Ki in the range of 0.1 mM); (b) the lipoamide dehydrogenase system (Ki = 5–10 μM); (c) the transport systems of phosphate (Ki ≈ 20 μM) and of glutamate (Ki = 3–5 μM); (d) the ADP transport, indirectly (Ki ≈ 10 μM).

6. 6. Like N-ethylmaleimide, fuscin inhibits the glutamate-OH carrier, the inhibition of that carrier bringing about an apparent increase of aspartate entry in glutamate-loaded mitochondria by the glutamate-aspartate carrier.

7. 7. The inhibition of phosphate transport by fuscin probably accounts for the inhibition of the reduction of endogenous NAD by succinate in intact pigeon heart mitochondria.

8. 8. By binding the −SH groups of mitochondrial membrane specifically unmasked by addition of micromolar amounts of ADP, fuscin, like N-ethylmaleimide, prevents the functioning of ADP translocation.

9. 9. Because of their specific and analogous effects on some well defined mitochondrial functions such as glutamate transport and ADP transport, fuscin and N-ethylmaleimide can be distinguished from other −SH reagents. The lipophilic nature of fuscin and N-ethylmaleimide which accounts for the accessbility of these compounds to hydrophobic sites in the mitochondrial membrane or on the matrix side of this membrane may be partly responsible for their characteristic inhibitory effects on mitochondrial functions.

Abbreviations: DTNB, 5,5′-dithio-bis-(2-nitrobenzoic acid); PCMB, p-chloromercuribenzoate  相似文献   


13.
The heteroditopic ligand 4′-(4,7,10-trioxadec-1-yn-10-yl)-2,2′:6′,2″-terpyridine, 2, contains an N,N′,N″-donor metal-binding domain that recognizes iron(II), and a terminal alkyne site that selectively couples to platinum(II). This selectivity has been used to investigate routes to the formation of heterometallic systems. The single crystal structures of ligand 2 and the complex [Fe(2)2][PF6]2 are reported.  相似文献   

14.
3-[3-(Piperidinomethyl)phenoxy]alkyl, N-cyano-N′-[ω-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidine and 2-(5-methyl-4-imidazolyl)methyl thioethyl derivatives containing fluorescent functionalities were synthesized and the histamine H2 receptor affinity was evaluated using the H2 antagonist [125I]-aminopotentidine. The compounds exhibited weak to potent H2 receptor affinity with pKi values ranging from <4 to 8.85. The highest H2 receptor affinity was observed for N-cyano-N′-[ω-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidines substituted with methylanthranilate (13), cyanoindolizine (6) and cyanoisoindole (11) moieties via an ethyl or propyl linker.  相似文献   

15.
The selective preparation of the four stereoisomers of β-methylphenylalanine (Mphe) from mixtures of the four stereoisomers of N-carbamoyl-β-methylphenylalanine (NCMphe) with N-carbamoyl amino acid amidohydrolases (carbamoylases) was developed. -Carbamoylase specifically hydrolyzed threo- -NCMphe with a little side activity toward erythro- -NCMphe, thus threo- -Mphe was produced with high optical purity from a mixture of the four stereoisomers of NCMphe. -Carbamoylase specifically produced threo- -Mphe from a mixture of the four stereoisomers of NCMphe. The erythro- -Mphe was obtained from erythro- -NCMphe which was prepared through diastereomer resolution by separative crystallization of benzoyl Mphe with a little side activity of -carbamoylase toward erythro- -NCMphe and the remaining erythro- -NCMphe was chemically hydrolyzed to erythro- -Mphe.  相似文献   

16.
The exceptional topoisomerase I-targeting activity and antitumor activity of 5-(2-N,N-dimethylamino)ethyl-8,9-dimethoxy-2,3-methylenedioxy-5H-dibenzo[c,h][1,6]naphthyridin-6-one (ARC-111, topovale) prompted studies on similarly substituted benzo[i]phenanthridine-12-carboxylic ester and amide derivatives. Among the benzo[i]phenanthridine-12-carboxylic esters evaluated, the 2-(N,N-dimethylamino)ethyl, 2-(N,N-dimethylamino)-1-methylethyl, and 2-(N,N-dimethylamino)-1,1-dimethylethyl esters possessed similar cytotoxicity, ranging from 30 to 55 nM in RPMI8402 and KB3-1 cells. Several of the carboxamide derivatives possess potent topoisomerase I-targeting activity and cytotoxicity. The 2-(N,N-dimethylamino)ethyl, 2-(N,N-diethylamino)ethyl, and 2-(pyrrolidin-1-yl)ethyl amides were among the more cytotoxic benzo[i]phenanthridine-12-carboxylic derivatives, with IC50 values ranging from 0.4 to 5.0 nM in RPMI8402 and KB3-1 cells.  相似文献   

17.
N-Nitrosomorpholine is converted into N-nitroso-2-hydroxymorpholine by rat liver microsomes and by the Fenton oxidation system. The hydroxy derivative was also synthesised by the oxidation of N-nitrosomorpholine with permanganate and characterized as the methoxime and the 2,4-dinitrophenylhydrazone. The Fenton system also afforded products believed to be N-nitroso-2-morpholone, and the 2-hydroperoxy- and 2-peroxy-derivatives ofN-nitrosomorpholine. The only urinary metabolite definitely identified was N-itrosodiethanolamine.

The significance of metabolic 2-hydroxylation in relation to the carcinogenic action of N-nitrosomorpholine is discussed.  相似文献   


18.
《FEBS letters》1989,250(2):218-220
N-Nitroso-β-phenyl-β-lactam has been found to be a specific inhibitor of β-lactamase. N-Nitroso--phenyl-β-lactam, by contrast, was virtually ineffective although a transient inhibition of short duration was observed. The acyl enzyme derived from the β-phenyl isomer is presumably involved in a cross-linking reaction, whereas that from the -phenyl isomer was quenched by spontaneous hydrolysis without formation of a covalent bond. No inhibitory effect of the β-phenyl isomer on chymotrypsin has been observed.  相似文献   

19.
Excessive phosphorylation of eukaryotic translation initiation factor 4E (eIF4E) plays a major role in the dysregulation of mRNA translation and the activation of tumor cell signaling. eIF4E is exclusively phosphorylated by mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) on Ser209. So, MNK1/2 inhibitors could decrease the level of p-eIF4E and regulate tumor-associated signaling pathways. A series of pyridone–aminal derivatives were synthesized and evaluated as MNK1/2 inhibitors. Several compounds exhibited great inhibitory activity against MNK1/2 and selected compounds showed moderate to excellent anti-proliferative potency against hematologic cancer cell lines. In particular, compound 42i (MNK1 IC50?=?7.0?nM; MNK2 IC50?=?6.1?nM) proved to be the most potent compound against TMD-8 cell line with IC50 value of 0.91?μM. Furthermore, 42i could block the phosphorylation level of eIF4E in CT-26 cell line, and 42i inhibited the tumor growth of CT-26 allograft model significantly. These results indicated that compound 42i was a promising MNK1/2 inhibitor for the potent treatment of colon cancer.  相似文献   

20.
Oxidative stress and its resultant products continue to attract investigators. Numerous endogenous substances have been suggested as potential markers for the identification of oxidative stress in tissues and organisms. In this study, we present a novel concept whereby an exogenous marker is designed and synthesized for the characterization of oxidative stress. The designed marker is constructed from tyrosine (Tyr) and linoleic acid (LA), which are attached covalently to form N-linoleoyl tyrosine (N-LT). Each of the two components (Tyr and LA) is known to be easily oxidized upon exposure to different types of reactive species. Combining the two allows their distinction from the endogenous Tyr and LA in the tested biological samples. The ability of the N-LT marker to characterize oxidative stress in macrophage cell lines was first studied using different types of ROS/RNS. N-LT was found to interact with macrophages, binding to the cell membrane. Upon treatment of J-774 A.1 macrophages with N-LT (40 μM) and with various oxidants; HOCl (0.2, 0.4 mM), copper ions (20 μM), SIN-1 (0.1, 1.0 mM), specific oxidized N-LT (Ox-N-LT) products were formed, depending on the type of oxidant used. Exposing cells to HOCl (0.2 mM) resulted in exclusive attack of the LA residue of N-LT, preferentially forming an adduct of HOCl to the LA double bond (N-L(HOCl)T, 4.3%). In contrast, when SIN-1 (0.1 mM) was applied as the oxidant, the Tyr moiety of N-LT was most reactive, yielding a nitration product of the Tyr aromatic ring (N-LT(NO2), 1.8%). Similar N-LT oxidation in cell-free systems yielded a significantly higher content of Ox-N-LT (10.8% N-L(HOCl)T, 7% N-LT(NO2)). The designed marker was then tested with peritoneal macrophages taken from atherosclerotic apolipoprotein-deficient (E0) mice showing specific and selective oxidation of N-LT to yield N-LT-hydroperoxide (1.9% N-L(OOH)T), at significantly higher levels than resulted from similar experiments using peritoneal macrophages harvested from control BalbC mice (0.0% N-L(OOH)T). In contrast, the differences in N-L(epoxy)T level between BalbC and E0 mice were not significant using both types of peritoneal macrophages (E0 and BalbC), suggesting that N-L(OOH)T is characteristic of the atherosclerotic state. Thus, we show that the designed marker is sufficiently sensitive to detect oxidative stress imposed on cells and cell-free systems and to react selectively with the various ROS/RNS induced. Such a marker may be useful for characterizing oxidative stress in general, and possibly also in oxidative-stress-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号