首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
PEGylated dendrimers with core functionality for biological applications   总被引:3,自引:0,他引:3  
The synthesis of a variety of core functionalized PEGylated polyester dendrimers and their in vitro and in vivo properties are described in this report. These water-soluble dendrimers have been designed to carry eight functional groups on their dendritic core for a variety of biological applications such as drug delivery and in vivo imaging as well as eight solubilizing groups. Using a common symmetrical aliphatic ester dendritic core and trifunctional amino acid moieties, a library of dendrimers with phenols, alkyl alcohols, alkynes, ketones, and carboxylic acid functionalities has been synthesized without the need for column chromatography. The amines were PEGylated, leaving the other functionality of the amino acid available for further manipulation such as the attachment of drugs and/or labels. Radiolabeling experiments with the PEGylated dendrimers showed that they had a long circulation half-life in mice, confirming the potential of this class of dendrimers for therapeutic and/or diagnostic applications. A carboxylic acid functionalized dendrimer was elaborated to carry doxorubicin bound via a hydrazone bond. The drug-loaded carrier accumulated more in tumors and less in healthy organs than the clinically used PEGylated liposomal formulation Doxil. The efficient synthesis, high versatility, and favorable biological properties make these PEGylated polyester dendrimers promising structures for therapeutic and/or imaging applications.  相似文献   

2.
Self-immolative dendrimers are uniquely structured molecules that release multiple tail units through a chain fragmentation initiated by a single cleavage at the dendrimer’s core. Although bioactivation of self-immolative dendritic molecules with only two reporter groups was demonstrated, enzymatic activation failed for self-immolative dendrimers with more reporters. These large and hydrophobic dendrimers aggregated under aqueous conditions and enzyme did not efficiently trigger chain fragmentation. Here we demonstrate a simple solution to the problem of enzymatic activation of hydrophobic self-immolative dendrimers. The reporter units on the dendritic platform were equipped with ionizable functional group. Polar interactions with water significantly decreased hydrophobicity of the dendrimers and prevented aggregate formation. Consequently, hydrophobic self-immolative dendrons were effectively activated.  相似文献   

3.
It is well known that antioxidants have protective effects against oxidative stress. Unfortunately, in the presence of transition metals, antioxidants, including polyphenols with potent antioxidant activities, may also exhibit pro-oxidant effects, which may irreversibly damage DNA. Therefore, antioxidants with strong free radical-scavenging abilities and devoid of pro-oxidant effects would be of immense biological importance. We report two antioxidant dendrimers with a surface rich in multiple phenolic hydroxyl groups, benzylic hydrogens, and electron-donating ring substituents that contribute to their potent free radical-quenching properties. To minimize their pro-oxidant effects, the dendrimers were designed with a metal-chelating tris(2-aminoethyl)amine (TREN) core. The dendritic antioxidants were prepared by attachment of six syringaldehyde or vanillin molecules to TREN by reductive amination. They exhibited potent radical-scavenging properties: 5 times stronger than quercetin and 15 times more potent than Trolox according to the 1,1-diphenyl-2-picrylhydrazyl assay. The antioxidant dendrimers also protected low-density lipoprotein, lysozyme, and DNA against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced free radical damage. More importantly, unlike quercetin and Trolox, the two TREN antioxidant dendrimers did not damage DNA via their pro-oxidant effects when incubated with physiological amounts of copper ions. The dendrimers also showed no cytotoxicity toward Chinese hamster ovary cells.  相似文献   

4.
Coles DJ  Yang S  Minchin RF  Toth I 《Biopolymers》2008,90(5):651-654
Understanding the nature of binding of polycationic dendrimers to DNA provides useful information on their role in gene delivery. In the present study, we have characterized the interaction of several peptide-based polycationic dendrimers with salmon sperm DNA using isothermal titration calorimetry. The dendrimers consisted of the cell penetrating peptide TAT, a nuclear localization signal peptide and dendritic polylysine. The binding affinity and thermodynamic parameters were found to increase as the number of positive charges on the dendrimer increased, indicating that ionic interactions were the major binding forces between the two molecules. The effect of acidic pH (3.2) compared to a more neutral pH (7.2) was also examined. The binding affinity was stronger at the lower pH but precipitation of the complex was more prominent at pH 7.2 which was shown by large enthalpies. The results indicate that our dendrimers are forming stable complexes with DNA.  相似文献   

5.
Poly(amidoamine) (PAMAM) dendrimers are promising nanocarriers that can enhance the solubility of hydrophobic drugs. The surface chemistry of dendrimers is of great relevance as end groups of these nanocarriers can be easily modified to improve the bioavailability and sustained release of the cargo. Therefore, a molecular‐level understanding of the host‐guest interactions that can give both qualitative and quantitative information is particularly desirable. In this work, fully atomistic molecular dynamics simulations were used to study the association of a bioactive natural product, ie, chalcone, with amine‐, acetyl‐, and carboxyl‐terminated PAMAM dendrimers at physiological and acidic pH environments. Amine‐ and carboxyl‐terminated PAMAM dendrimers have an open microstructure at low pH that is not able to hold the ligand tightly, resulting in an unfavorable encapsulation of the chalcone molecule. In the case of acetyl‐terminated dendrimer, chalcone molecule diffuses out of the dendritic cavities a few times during the simulation time and prefers to locate close to the surface of dendrimer. Average center of mass distance values at neutral pH showed that the chalcone molecule bounds firmly in the internal pockets of amine‐, acetyl‐, and carboxyl‐terminated dendrimers and forms stable complexes with these nanovectors. The potential of mean force calculations showed that the release of the ligand from the dendrimers occurs at a controlled rate in the body.  相似文献   

6.
The eight-cysteine motif, a versatile structure in plant proteins.   总被引:12,自引:0,他引:12  
A number of protein sequences deduced from the molecular analysis of plant cDNA or genomic libraries can be grouped in relation to a defined number of cysteine residues located in distinct positions of their sequences. This is the case for a group of around 500 polypeptides from different species that contain a small domain (less than 100 amino acids residues) displaying a pattern of eight-cysteines in a specific order. The plant sequences containing this motif belong to proteins having different functions, ranging from storage, protection, enzyme inhibition and lipid transfer, to cell wall structure. The eight-cysteine motif (8CM) appears to be a structural scaffold of conserved helical regions connected by variable loops, as observed by three-dimensional structure analysis. It is proposed that the cysteine residues would form a network of disulfide bridges necessary, for the maintenance of the tertiary structure of the molecule together with the central helical core, while the variable loops would provide the sequences required for the specific functions of the proteins.  相似文献   

7.
Staphylococcus aureus sortase anchors surface proteins to the cell wall envelope by cleaving polypeptides at the LPXTG motif. Surface proteins are linked to the peptidoglycan by an amide bond between the C-terminal carboxyl and the amino group of the pentaglycine cross-bridge. We find that purified recombinant sortase hydrolyzed peptides bearing an LPXTG motif at the peptide bond between threonine and glycine. In the presence of NH(2)-Gly(3), sortase catalyzed exclusively a transpeptidation reaction, linking the carboxyl group of threonine to the amino group of NH(2)-Gly(3). In the presence of amino group donors the rate of sortase mediated cleavage at the LPXTG motif was increased. Hydrolysis and transpeptidation required the sulfhydryl of cysteine 184, suggesting that sortase catalyzed the transpeptidation reaction of surface protein anchoring via the formation of a thioester acyl-enzyme intermediate.  相似文献   

8.
Chen G  Felgner PL  Guan Z 《Biomacromolecules》2008,9(7):1745-1754
Here we present an efficient synthesis of functional dendritic polymers carrying internal fluorescence labels for bioconjugation. Specifically, dendritic polymers having pyrene as fluorescence label in the core and N-hydroxysuccinimide (NHS) functional groups at the periphery were synthesized by coupling heterobifunctional PEG to hydroxyl functionalized dendritic polyethylene core. The dendritic polyethylene cores containing one pyrene label per polymer molecule were prepared through a one-step transition-metal-catalyzed polymerization using a pyrene-labeled Pd(II)-alpha-diimine chain walking catalyst. A series of pyrene-labeled dendritic scaffolds were obtained with different molecular weights and sizes. NHS active end groups were introduced to the periphery of the dendritic scaffolds through end-group functionalization. Those NHS-functionalized dendritic scaffolds were successfully used to conjugate a model protein, ovalbumin, to yield protein-polymer conjugates carrying multiple copies of protein attached to each scaffold.  相似文献   

9.
We described herein the synthesis of second generation glycopeptide dendrimers G2a-g presenting variable amino acids placed internally into the multivalent scaffold. The effect of such structural modulation on recognition processes by Concanavalin A (Con A), was then estimated by enhanced-sensitivity Enzyme-Linked Lectin Assay (ELLA). In a complementary study, glycopeptide dendrons of different valencies and including a l-cysteine residue before the dendritic core (G0SH, G1SH and G2SH), were also synthesized and homodimerized. Then, the disulfide-containing glycopeptide dendrimers generated by this convergent approach (G0(2)S(2), G1(2)S(2) and G2(2)S(2)) were used as Con A inhibitors and assayed by ELLA.  相似文献   

10.
Gu L  Luo PG  Wang H  Meziani MJ  Lin Y  Veca LM  Cao L  Lu F  Wang X  Quinn RA  Wang W  Zhang P  Lacher S  Sun YP 《Biomacromolecules》2008,9(9):2408-2418
Single-walled carbon nanotube (SWNT) is a pseudo-one-dimensional nanostructure capable of carrying/displaying a large number of bioactive molecules and species in aqueous solution. In this work, a series of dendritic beta-D-galactopyranosides and alpha-D-mannopyranosides with a terminal amino group were synthesized and used for the functionalization of SWNTs, which targeted the defect-derived carboxylic acid moieties on the nanotube surface. The higher-order sugar dendrons were more effective in the solubilization of SWNTs, with the corresponding functionalized nanotube samples of improved aqueous solubility characteristics. Through the functionalization, the nanotube apparently serves as a unique scaffold for displaying multiple copies of the sugar molecules in pairs or quartets. Results on the synthesis and characterization of these sugar-functionalized SWNTs and their biological evaluations in binding assays with pathogenic Escherichia coli and with Bacillus subtilis (a nonvirulent simulant for Bacillus anthracis or anthrax) spores are presented and discussed.  相似文献   

11.
We report on the combined use of fluorescence correlation spectroscopy (FCS) and 1H and 13C NMR spectroscopy to detect the size and type of peptide secondary structures in a series of poly-Z-L-lysine functionalized polyphenylene dendrimers bearing the fluorescent perylenediimide core in solution. In dilute solution, the size of the molecule as detected from FCS and 1H NMR diffusion measurements matches nicely. We show that FCS is a sensitive probe of the core size as well as of the change in the peptide secondary structure. However, FCS is less sensitive to functionality. A change in the peptide secondary conformation from beta-sheets to alpha-helices detected by 13C NMR spectroscopy gives rise to a steep increase in the hydrodynamic radii for number of residues n > or = 16. Nevertheless, helices are objects of low persistence.  相似文献   

12.
Dendrimers are well-defined hyperbranched macromolecules with characteristic globular structures for the larger systems. The recent impressive strides in synthetic procedures increased the accessibility of functionalized dendrimers at a practicable scale, resulting in a rapid development of dendrimer chemistry. Dendrimers have inspired many chemists to develop new materials and several applications have been explored, catalysis being one of them. The position of the catalytic site(s) as well as the spatial separation of the catalysts within the dendritic framework is of crucial importance. Dendrimers that are functionalized with transition metals in the core can potentially mimic properties of enzymes, their efficient natural counterparts, whereas the surface-functionalized systems have been proposed to fill the gap between homogeneous and heterogeneous catalysis. We prepared both core- and periphery-functionalized dendritic catalysts that are sufficiently large to enable separation by modern nanofiltration techniques. Here we review our recent findings using these promising novel transition metal-functionalized dendrimers as catalysts in several reactions. We will discuss some of the consequences of the architecturally different systems that have been studied and will elaborate on a novel non-covalent strategy of dendrimer functionalization.  相似文献   

13.
Single-triggered disassemble dendrimers were recently developed and introduced as a potential platform for a multi-prodrug. These unique structural dendrimers can release all of their tail units through a self-immolative chain fragmentation initiated by a single cleavage at the dendrimer's core. There are several examples for the bioactivation of first-generation self-immolative dendritic prodrugs. However, enzymatic activation failed for second-generation self-immolative dendrimers. The hydrophobic large molecular structure of the dendritic prodrugs results in aggregation under aqueous conditions and prevented the enzyme from reaching the triggering substrate. Here we show a simple solution for the enzymatic activation of second-generation self-immolative dendrimers. Poly(ethylene glycol) (PEG) was conjugated to the dendritic platform via click chemistry. The poly(ethylene glycol) tails significantly decreased the hydrophobic properties of the dendrimers and thereby prevented aggregate formation. We designed and synthesized a dendritic prodrug with four molecules of the anticancer agent camptothecin and a trigger that can be activated by penicillin-G-amidase. The PEG5000-conjugated, self-immolative dendritic prodrug was effectively activated by penicillin-G-amidase under physiological conditions and free camptothecin was released to the reaction media. Cell-growth inhibition assays demonstrated increased toxicity of the dendritic prodrug upon incubation with the enzyme.  相似文献   

14.
Albericio F 《Biopolymers》2000,55(2):123-139
For the controlled synthesis of even the simplest dipeptide, the N(alpha)-amino group of one of the amino acids and the C-terminal carboxyl group of the other should both be blocked with suitable protecting groups. Formation of the desired amide bond can now occur upon activation of the free carboxyl group. After coupling, peptide synthesis can be continued by removal of either of the two protecting groups and coupling with the free C-terminus or N(alpha)-amino group of another protected amino acid. When three functional amino acids are present in the sequence, the side chain of these residues also has to be protected. It is important that there is a high degree of compatibility between the different types of protecting groups such that one type may be removed selectively in the presence of the others. At the end of the synthesis, the protecting groups must be removed to give the desired peptide. Thus, it is clear that the protection scheme adopted is of the utmost importance and makes the difference between success and failure in a given synthesis. Since R. B. Merrifield introduced the solid-phase strategy for the synthesis of peptides, this prerequisite has been readily accepted. This strategy is usually carried out using two main protection schemes: the tert-butoxycarbonyl/benzyl and the 9-flourenylmethoxycarbonyl/tert-butyl methods. However, for the solid-phase preparation of complex or fragile peptides, as well as for the construction of libraries of peptides or small molecules using a combinatorial approach, a range of other protecting groups is also needed. This review summarizes other protecting groups for both the N(alpha)-amino and C-terminal carboxyl functions.  相似文献   

15.
Dendrimers are regular tree-like macromolecules accessible by chemical synthesis from a variety of building blocks. Their topology enforces a globular shape that offers a unique opportunity to design artificial enzymes. Catalytic groups such as metal complexes and cofactors can be placed at the dendrimer core to exploit microenvironment and selectivity effects of the dendritic shell. In a second approach, attaching catalytic groups in multiple copies at the end of the dendritic branches may lead to cooperativity effects. Finally, exploration of dendritic structural space by screening combinatorial libraries of peptide dendrimers for catalytic activity can lead to discovery of functional dendrimers with enzyme-like properties, in a process mimicking natural selection.  相似文献   

16.
Three generations of alpha,gamma-diaminobutyric acid modified poly(propyleneimine) dendrimers [DAB(AM)n, n = 4, 8, 16] containing 4, 8, 16 free amino groups were coupled with Boc-protected alpha,gamma-diaminobutyric acid (DABA) moieties in high yields. These modified dendrimers were deprotected and the chiral dendritic amines with 8, 16 and 32 amino groups on the surface were isolated in excellent yields. Dendrimers with cisplatin moieties at the periphery were obtained in the reaction of the free amine dendrimers and potassium tetrachloroplatinate(II). The highly insoluble complexes were isolated as hydrates and characterized by means of IR, TGA and elemental analysis.  相似文献   

17.
Many diagnostic and therapeutic applications of monoclonal antibodies require the covalent linking of effector or reporter molecules to the immunoglobulin polypeptides. Existing methods generally involve the non-selective modification of amino acid side chains, producing one or more randomly distributed attachment sites. This results in heterogeneous labelling of the antibody molecules and often to a decrease in antigen-binding due to the modification of residues close to the antigen-binding site. We report a novel strategy for site-specifically labelling antibodies through surface cysteine residues. Examination of molecular structures was used to identify amino acids of the CH1 domain of the IgG heavy chain that were accessible to solvent but not to larger molecules. Site-directed mutagenesis was used to substitute cysteine residues at these positions in the heavy chain of a mouse/human chimaeric version of the tumour-binding monoclonal antibody, B72.3. Expression of the modified antibody genes in mammalian cells yielded correctly assembled proteins that had thiol groups in pre-determined positions and showed no loss of antigen-binding activity. One of the mutants was used to demonstrate the site-specific attachment of a radio-iodinated ligand to the chimaeric B72.3 antibody.  相似文献   

18.
We demonstrate the applicability of sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions (click chemistry) for the immobilization of carbohydrates and proteins onto a solid surface. An alpha,omega-poly(ethylene glycol) (PEG) linker carrying alkyne and cyclodiene terminal groups was synthesized and immobilized onto an N-(epsilon-maleimidocaproyl) (EMC)-functionalized glass slide via an aqueous Diels-Alder reaction. In the process, an alkyne-terminated PEGylated surface was provided for the conjugation of azide-containing biomolecules via click chemistry, which proceeded to completion at low temperature and in aqueous solvent. As anticipated, alkyne, azide, cyclodiene, and EMC are independently stable and do not react with common organic reagents nor functional groups in biomolecules. Given an appropriate PEG linker, sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions provide an effective strategy for the immobilization of a wide range of functionally complex substances onto solid surfaces.  相似文献   

19.
The fate of the amino termini of nascent polyalanine, polyserine, and polylysine was monitored by fluorescence techniques as each was translated on Escherichia coli ribosomes. A coumarin probe was placed at the alpha-amino group of a synthetic elongator alanyl-tRNA or a synthetic initiator alanyl-tRNA or at the epsilon-amino group of natural lysyl-tRNA, and each was used to nonenzymatically initiate peptide synthesis. The fluorescent alanyl-tRNAs containing an AAA anticodon were used to initiate polyserine (with a synthetic tRNA(Ser] or polyalanine synthesis from a poly(uridylic acid) template. The fluorescent lysyl-tRNA was used to initiate polylysine synthesis from poly(adenylic acid). Changes in the fluorescence of the amino-terminal coumarin were examined to characterize the environment of the probe as the nascent peptides were extended. Protection from proteolysis and the binding of anti-coumarin antibodies or Fab fragments suggest that the amino terminus of each polypeptide is protected from interaction with proteins (Mr greater than 28,000) until the peptides are extended to an average length of 40-50 residues; however, the fluorescence from the amino terminus of shorter nascent polyalanine and polyserine peptides was readily quenched by methyl viologen (Mr = 257), indicating ribosomes do not shield the nascent peptide from molecules of this size. The data appear to indicate that polyalanine, polyserine, and polylysine are extended from the peptidyl transferase into a protected region of the ribosome such as a groove or tunnel but that this region is readily accessible to small molecules.  相似文献   

20.
Optimal conditions for the conjugation of carboxyl groups on low molecular weight molecules to reactive amino groups on rabbit immunoglobulin G (IgG) using a modified carbodiimide reaction have been investigated. Reaction of [14C]hippuric acid with N-ethyl-N′-(dimethylaminopropyl) carbodiimide at pH 5 followed by adjustment to pH 8 and coupling with rabbit IgG resulted in the formation of hippuric acid-IgG conjugates with less than 10% intra- and intermolecular IgG crosslinking. More than 93% of the bonds linking hippuric acid to IgG were stable to hydroxylamine hydrolysis, indicating the peptide properties of these bonds. This two-step process permitted a defined number of hippuric acid moieties to be loaded onto a single IgG molecule and should provide a useful method for the conjugation of molecules containing carboxyl groups to amino groups on a variety of polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号