首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H Ueda  Y Goshima  Y Misu 《Life sciences》1983,33(4):371-376
Using high performance liquid chromatography with an electro-chemical detector, we studied effects of different compounds on the impulse-evoked release of endogenous noradrenaline (NA) and dopamine (DA) release from slices of the rat hypothalamus. Adrenaline (10(-7) M), with a potent alpha-agonistic action decreased both NA and DA release, and these effects were blocked by pretreatment with yohimbine (10(-7 M). The alpha 2-antagonist, yohimbine alone (10(-8) - 10(-6) M) concentration-dependently increased these releases, while alpha 1-antagonist, prazosin showed weak increase on NA but not DA release at 10(-6) M. Isoproterenol (10(-10) - 10(-8) M) concentration-dependently increased these releases and the effects were antagonized by pretreatment with a non-selective beta-antagonist, 1-propranolol, a beta 1-antagonist, atenolol or a beta 2-antagonist, butoxamine. 1-Propranolol (3 X 10(-7) M) alone, but not the d-isomer inhibited the releases. Thus, in the rat hypothalamus, the release of NA and DA may be mediated via presynaptic alpha 2-, beta 1- and beta 2-adrenoceptors.  相似文献   

2.
The combined effect of a beta 2-antagonist and an alpha 2-agonist on the release of adrenal catecholamines was studied in the anaesthetized and vagotomized dog. The electrical stimulation of the splanchnic nerve (5-V pulses of 2 ms duration for 3 min at a frequency of 3 Hz) produced a significant rise in adrenal catecholamine release in the adrenal vein. Intravenous injection of a beta 2-antagonist significantly reduced this response and a subsequent injection of an alpha 2-agonist further reduced the release of catecholamines. However, if the alpha 2-agonist is injected first, the release is not different compared with the control stimulation, and the subsequent injection of the beta 2-antagonist also did not modify the release in response to electrical stimulation. These results suggest that the blockade of presynaptic beta 2-receptors reduces the release of adrenal catecholamines without interfering with the activation of the alpha 2-adrenoceptors. In contrast, the pretreatment with the alpha 2-agonist, which does not modify the release of catecholamine at 3 Hz, seems to interfere with the inhibitory effect of the beta 2-antagonist.  相似文献   

3.
beta, gamma-Methylene ATP (betagamma-mATP) significantly facilitated the electrically (4 Hz) evoked release of noradrenaline (NA) from the rabbit ear artery by activation of prejunctional purinoceptors on the sympathetic nerve terminals. In the present study, we investigated whether intracellular cAMP is involved in the purinoceptor mediated facilitatory mechanisms. Forskolin, an adenylate cyclase activator, and 8-bromo cAMP, a cAMP analogue, significantly enhanced the NA-release. The enhancement of NA-release by betagamma-mATP was significantly potentiated by Ro20-1724, a phosphodiesterase inhibitor, but abolished by SQ22536, an adenylate cyclase inhibitor. Both drugs alone had no effect on the NA-release. N-ethylmaleimide and pertussis toxin, inhibitors of Gi-proteins, did not affect the NA-release, or the enhancement of NA-release by betagamma-mATP. Alone Cholera toxin (CTX), an activator of Gs-proteins, significantly increased the NA-release, but in the presence of CTX, betagamma-mATP could not produce further enhancement of the NA-release. These results suggest that cAMP is closely associated with the facilitatory action of betagamma-mATP on NA-release in the rabbit ear artery.  相似文献   

4.
Rat brain cortex slices, prelabelled with [3H]noradrenaline, were superfused and exposed to electrical biphasic block pulses (1 Hz; 12 mA, 4 ms) or to the Ca2+ ionophore A 23187 (10 microM) in the presence of 1.2 mM Ca2+. Forskolin (10 microM), 8-bromo-cyclic AMP (300 microM), and dibutyryl-cyclic AMP (300 microM) facilitated both the electrically evoked and A 23187-induced [3H]noradrenaline release, whereas the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX, 300 microM) and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771, 30 microM) enhanced the electrically evoked release only. The inhibitory effects of clonidine (1 nM-1 microM) and the facilitatory effect of phentolamine (0.01-10 microM) on the electrically evoked [3H]noradrenaline release were strongly reduced in the presence of 8-bromo-cyclic AMP. Clonidine (1 microM) reduced and phentolamine (3 microM) enhanced A 23187-induced [3H]noradrenaline release, provided that the slices were simultaneously exposed to forskolin. The inhibitory effects of morphine (1 microM) and [D-Ala2-D-Leu5]enkephalin (DADLE, 0.3 microM), like that of the Ca2+ antagonist Cd2+ (15 microM), on the electrically evoked release of [3H]noradrenaline were not affected by 8-bromo-cyclic AMP. Moreover, morphine and DADLE did not inhibit A 23187-induced release in the absence or presence of forskolin. These data strongly suggest that in contrast to presynaptic mu-opioid receptors, alpha 2-adrenoceptors on noradrenergic nerve terminals are negatively coupled to adenylate cyclase and may thus reduce neurotransmitter release by inhibiting the feed-forward action of cyclic AMP on the secretion process.  相似文献   

5.
Presynaptic modulation by opioids of electrically-evoked neurotransmitter release from superfused rat amygdala slices prelabelled with [3H]noradrenaline (NA) and [14C]choline was examined. Both [3H]NA and [14C]acetylcholine release were strongly inhibited by morphine, the mixed δ/μ-receptor agonist [ -Ala2, -Leu5]enkephalin (DADLE) and the highly selective μ-agonist [ -Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO), whereas the highly selective δ-agonist [ -Pen2, -Pen5]enkephalin and the κ-agonist bremazocine were without effect. The inhibitory effects were potently antagonized by naloxone but not by the selective δ-receptor antagonist fentanylisothiocyanate. When the selective uptake inhibitor desipramine was used to prevent uptake of [3H]NA into noradrenergic nerve terminals, but sparing the uptake into dopaminergic nerve terminals, the electrically evoked release of tritium was strongly inhibited by bremazocine but not by DADLE or DAMGO.

The data indicate, that in the amygdala transmitter release from dopaminergic nerve fibres is inhibited only via activation of κ-receptors, whereas transmitter release from noradrenergic and cholinergic nerve fibers is subjected to inhibition by opioids via activation of μ-receptors only. Regional differences and similarities of modulation of neurotransmitter release by opioids in the rat brain are briefly discussed.  相似文献   


6.
The adrenal nerve of anaesthetized and vagotomized dogs was electrically stimulated (10 V pulses of 2 ms duration for 10 min) at frequencies of 1, 3, 10, and 25 Hz. There was a correlation between the frequency of stimulation and the plasma concentrations of epinephrine, norepinephrine, and dopamine in the adrenal vein, mainly after the 1st min of stimulation and the maximal concentration was reached sooner with higher frequencies of stimulation. Moreover, the relative percentage of catecholamines released in response to the electrical stimulation was not changed by the frequency of stimulation. To test the hypothesis that a local negative feedback mechanism mediated by alpha 2-adrenoceptors exists in the adrenal medulla, the effects of the systemic administration of clonidine (alpha 2-antagonist) on the concentrations of catecholamines in the adrenal vein were evaluated during the electrical stimulation of the adrenal nerve (5 V pulses of 2 ms duration for 3 min) at 3 Hz. Moreover, the effects of the systemic injections of more specific alpha 2-agonist and antagonist (oxymetazoline and idazoxan) were tested on the release of catecholamines in the adrenal vein in response to electrical stimulation of the splanchnic nerve at 1 and 3 Hz frequencies. The injection of 0.5 mg/kg of yohimbine caused a significant increase in the concentrations of epinephrine and norepinephrine in the adrenal vein induced by the electrical stimulation of the adrenal nerve and the injection of 15 micrograms/kg of clonidine had no effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Hemorrhage or hypotension induces extensive Fos-like immunoreactivity in the magnocellular neurosecretory cells in the supraoptic nucleus of the hypothalamus in rat,especially in the vasopressin neurons.The present study was to explore the neurotransmitter mediating this effect,Microinfusion of the alpha-adrenergic blocker into the supraoptic nucleus reduced the hypotension-induced FOs.whereas beta-antagonist did not affect it significantly.Alaha1-and alpha2-antagonist,prazosin and yohimbine,both reduced the Fos-Positive cell counts.However,the effective dosage of yohimbine was much larger,Alpha1-agonist,methoxamine,induced abundant Fos-like immunoreactivity in the vasopressin cells in this nucleus,while beta-and alpha2-agonist did not elicit such effect.Administration of the noradrenergic re-uptake inhibitor desipramine,to this nucleus to locally accumulate the spontaneously released noradrenaline from the nerve terminals also induced Fos expression,mostly in the vasopressin cells.  相似文献   

8.
Isolated rat neurointermediate lobes were incubated in vitro. The release of 3,4-dihydroxyphenylethylamine (dopamine, DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and methoxyphenylethanol (MOPET) was determined by HPLC with electrochemical detection. Under resting conditions, the outflow of metabolites was 35-50 times that of DA. HVA accounted for 50%, DOPAC for 45%, and MOPET for 5% of the metabolites. Although an equivalent of 40-50% of the tissue DA content was released per hour as metabolites, the tissue DA content was not reduced after 110 min of incubation. The spontaneous outflow of DA and its metabolites was not affected by the DA uptake inhibitor GBR 12921 (100 nM). Pargyline (10 microM) caused a time-dependent decrease of all metabolites (up to 90%). In the presence of GBR 12921 and pargyline, the spontaneous outflow of DA increased sevenfold. Removal of the intermediate lobe caused a 78% reduction in tissue DA content and a corresponding reduction of the outflow of metabolites. Electrical stimulation of the pituitary stalk (0.2 ms, 10 V, 15 Hz, three times for 1 min at intervals of 1 min) induced an increase in outflow of DA and all metabolites. DA accounted for 15%, HVA for 41%, DOPAC for 32%, and MOPET for 12% of the evoked release. The electrically evoked release of DA increased fourfold in the presence of GBR 12921 or pargyline and the effects of both drugs were additive. The evoked release of metabolites was not significantly affected by GBR 12921 but completely abolished by pargyline. In conclusion, oxidative deamination and O-methylation are important pathways for the catabolism of DA in the neurointermediate lobe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract: In this study, we compare the electrically evoked, somatodendritic release of dopamine (DA) with axonal release of serotonin (5-HT) in the substantia nigra (SN) and ventral tegmental area (VTA) in vitro by using fast-scan cyclic voltammetry with carbon-fibre microelectrodes. Furthermore, we have examined transmitter release in these regions in guinea-pig compared with rat. Somatodendritic DA was released, as shown previously, in guinea-pig VTA, SN pars compacta (SNc), and occasionally in SN pars reticulata (SNr). 5-HT was rarely released, except in SNr, where nonetheless it only contributed to <30% of amine signals. In rat midbrain, somatodendritic DA release was evoked to a similar extent as in guinea-pig. However, a clear species difference was apparent; i.e., 5-HT and DA were detected equally in rat SNc, whereas in rat SNr, 5-HT was the predominant transmitter detected. Nevertheless, electrically evoked extracellular concentrations of 5-HT in SNc and SNr were, respectively, seven- and fourfold less than DA in SNc. 5-HT release was low in all regions in neonatal rat slices before the maturation of 5-HT terminals. Hence, axonal 5-HT transmission in midbrain exhibits both species and site selectivity. Moreover, whereas somatodendritic DA release is conventionally regarded as modest compared with axon terminal release in striatum, somatodendritic DA release can result in significantly greater extracellular levels than a transmitter released from axon terminals in the same locality.  相似文献   

10.
Nicotine binds to nicotinic acetylcholine receptors on dopaminergic terminals to evoke dopamine (DA) release. The clearance of released DA occurs rapidly through reuptake into nerve terminals through the DA transporter (DAT). However, whether nicotine modulates DAT function in vivo is still not well understood. In the present study, we determined the effect of nicotine on DA clearance using in vivo amperometric recording in the striatum of urethane-anesthetized rats. Stable DA release was evoked by electrical stimulation of the medial forebrain bundle (MFB). Subsequently, nicotine or saline was administered with MFB stimulation at 10-min intervals for 60 min. Kinetic analysis revealed that nicotine decreased the amplitude of DA overflow and the maximal DA clearance rate (V(max)) in response to stimulation of 96 pulses at 80 Hz. Surprisingly, nicotine enhanced the maximal DA clearance rate (V(max)) by stimulation of 768 pulses at 80 Hz. Furthermore, we found that this paradoxical effect of nicotine on V(max) depended on the stimulation pattern. These results suggest that nicotine may exert its addictive role by dynamically modulating DAT function in vivo.  相似文献   

11.
In the present study we characterize the optimal experimental conditions under which to investigate the cholinergic regulation of endogenous electrically evoked γ-aminobutyric acid (GABA) release from guinea pig cortical slices. Superfusion with the neuronal GABA reuptake inhibitor, SKF89976A (10 μM) caused cortical GABA release to be linearly correlated with the frequency of electrical stimulation (5, 10, 20 Hz). Electrically evoked GABA release (10 Hz) was tetrodotoxin-sensitive and Ca2+-dependent and was under GABAB autoreceptor control. Under these experimental conditions, acetylcholine (0.1–10 μM) and physostigmine (30 μM) decreased the electrically evoked GABA release while the M2 receptor antagonist AFDX-116 (0.01–0.1 μM) counteracted these effects. Similar results were also observed in a cortical synaptosomal preparation stimulated with K+ (10 mM). These findings demonstrate an inhibitory cholinergic regulation of electrically evoked GABA release via M2 receptors located on cortical GABAergic terminals.  相似文献   

12.
O O Anakwe  W H Moger 《Life sciences》1984,35(20):2041-2047
The present studies characterized the beta-receptor subtype involved in androgen production by cultured mouse testicular interstitial cells and explored the possible stimulation of androgen release by alpha-adrenergic agonists. During a 3-hour incubation period, LH and a non-specific beta-adrenergic agonist, L-isoproterenol steadily increased androgen production with a similar time-course. Isoproterenol, epinephrine, norepinephrine and a specific beta 2-receptor agonist, salbutamol stimulated androgen release in a concentration-dependent manner. The concentrations of the agonists required for half-maximum stimulation (EC50) were approximately 1 nM (isoproterenol), 8 nM (epinephrine), 9 nM (salbutamol) and 2 microM (norepinephrine) giving an order of potency of isoproterenol greater than epinephrine = salbutamol much greater than norepinephrine. L- but not the D-isomer of isoproterenol induced androgen production. A non-selective beta-receptor antagonist, propranolol, abolished androgen production induced by isoproterenol. A selective beta 2-receptor antagonist ICI 118,551 inhibited the isoproterenol effect in a concentration-dependent manner with half-maximum inhibition (IC50) at approximately 23 nM. The beta 1-receptor antagonists, metoprolol and atenolol had no effect on isoproterenol-induced androgen release. The stimulatory effect of norepinephrine (an alpha- and beta-agonist) was completely (100%) abolished by propranolol, unaffected by the alpha-antagonist phentolamine and only partially (35%) inhibited by phenoxybenzamine. Phenoxybenzamine and the alpha 2-agonist, clonidine reduced basal androgen production. These studies indicate that androgen production by primary cultures of mouse testicular interstitial cells occurs exclusively via the beta 2-receptor subtype and that alpha-receptor agonists do not stimulate androgen release by these cells.  相似文献   

13.
The effects of adrenergic drugs on the twitch tension of the electrically driven (1.2-1.5 Hz) ventricular preparations from 2-20-day old chick embryos and hatched chicks were studied. Agonists evoked positive inotropic responses of 3-day embryonic ventricles and of ventricles from older animals. 2-day embryonic ventricles were unresponsive. 5-day embryonic ventricles were most sensitive to agonists (EC50 value of adrenaline = 4.5 x 10(-9) M), while ventricles from 14-20-day old embryos had a minimal sensitivity (1-2 x 10(-9) M), while ventricles from 14-20-day old embryos had a minimal sensitivity (1-2 x 10(-7) M). The order of agonists activity (isoproterenol greater than noradrenaline greater than adrenaline much greater than phenylephrine) and the high potency of propranolol as antagonist of adrenaline indicate that responses are mediated with beta-adrenoceptors. The role of GTP-binding protein for the regulation of adrenoreactivity in embryonic chick heart during ontogenesis is discussed.  相似文献   

14.
Abstract: Noradrenaline release from sympathetic nerve terminals was evoked by electrical nerve stimulation of an isolated segment of rat tail artery. This release was recorded by a carbon fiber electrode combined with differential pulse amperometry. The active part of the electrode (one carbon fiber 8 μm in diameter and 50 μm in length) was placed in close contact with the arterial surface. The oxidation current appearing at +120 mV and corresponding to the local noradrenaline concentration at the electrode surface was recorded every 0.5 s. No oxidation current was detected under resting conditions, but electrical stimulation evoked an immediate increase in this current. This response was suppressed when tetrodotoxin was added to the perfusion medium and was enhanced when noradrenaline reuptake was inhibited by cocaine. The amplitude of the response was increased with increasing stimulation frequencies (2–25 Hz) and train lengths (1–16 pulses). Finally, the time resolution of the method (0.5 s) was good enough to show that noradrenaline release precedes the postsynaptic response, i.e., the electrically evoked contraction of the artery.  相似文献   

15.
K Racké  E B?hm  S Hurth  E Muscholl 《Life sciences》1986,38(19):1749-1756
The release of endogenous dopamine (DA) from the in vitro incubated combined neurointermediate lobe (NIL) or isolated neural lobe (NL) was studied. In the presence of the DA uptake inhibitor GBR 12921 (200 nM), electrical stimulation of the pituitary stalk caused an increase of the outflow of DA from the NIL in a frequency-dependent manner. Naloxone (1 microM) enhanced the DA release from the NIL evoked by electrical stimulation at 7 or 15 Hz by about 40%, but had no effect on DA release evoked by stimulation at 3 Hz. When the electrical stimulation was carried out at 15 Hz, the evoked DA release (expressed as fraction of the DA tissue content) from the NL amounted to only 15% of that from the combined NIL. Naloxone (1 microM) increased the evoked DA release from the isolated NL by 242%. Thus, the effect of naloxone on DA release from the combined NIL may be confined mainly to the NL. In conclusion, DA release from the NL is under inhibitory control of endogenous opioids released from the NL during stimulation at 7 or 15 Hz. Beta-Endorphin, known to be released spontaneously at a high rate from in vitro incubated NILs, appears to lack inhibitory effects on DA release from the NIL.  相似文献   

16.
The nigrostriatal dopaminergic system of rats was unilaterally lesioned with 6-hydroxydopamine. Part of the animals was grafted 2 weeks later with fetal dopaminergic cells on the lesioned side; untreated rats of the same strain served as controls. Both 3 and 12-14 months after surgery the striatal dopamine (DA) content and the in vivo rotational response following injection of D-amphetamine showed significant changes in grafted as compared to lesioned animals. At 12-14 months after transplantation, the electrically evoked release of tritiated DA and acetylcholine (ACh) in slices (preincubated with [3H]DA or [3H]choline, respectively) of striata of intact, lesioned, or grafted animals was also investigated. Electrical field stimulation of striatal slices of the lesioned side did not evoke any significant [3H]DA overflow, whereas a marked [3H]DA release was observed in slices of grafted and control striata. Moreover, both DL-amphetamine (3 microM) and nomifensine (10 microM) strongly enhanced basal 3H outflow in these slices. Electrically evoked [3H]ACh release was significantly reduced in slices from all striatal tissues by 0.01 microM apomorphine. In slices from denervated striata a clearcut hypersensitivity for this action of apomorphine was present, indicating supersensitivity of DA receptors on cholinergic terminals; this hypersensitivity was significantly reduced in graft-bearing striata. Furthermore, because this hypersensitivity was unchanged in slices of lesioned striata under stimulation conditions (four pulses/100 Hz) avoiding inhibition by endogenously released DA, it is concluded that lesion-induced DA receptor supersensitivity is caused by an increase in receptor density or efficacy rather than by a decreased competition between endogenous and exogenous agonists. Both reuptake blockade of DA with nomifensine (10 microM) and release of endogenous DA by DL-amphetamine (3 microM) potently reduced [3H]ACh release only in control and grafted but not in lesioned tissue. In experiments using potassium-evoked [3H]ACh release, tetrodotoxin had no effect on the inhibitory activity of amphetamine and nomifensine, indicating that the DA receptors involved in their indirect inhibitory action are located directly on the cholinergic terminals.  相似文献   

17.
M Baes  C Denef 《Life sciences》1984,34(15):1447-1454
As previously shown, the beta-adrenergic agonists isoproterenol, epinephrine and norepinephrine stimulate prolactin (PRL) release from superfused rat anterior pituitary cell aggregates. In order to further characterize the beta-adrenergic response in this tissue preparation, the effects of various beta-adrenergic agents were investigated. The beta 2-agonist, zinterol, stimulated PRL release at concentrations more than 4 orders of magnitude lower than prenalterol, a beta 1-agonist with high potency in rat heart. The order of potency of the antagonists IPS 339 (beta 2), ICI 118.551 (beta 2), propranolol, sotalol, practolol (beta 1), metoprolol (beta 1) and H 35/25 for inhibition of beta-agonist-stimulated PRL release provided additional support for a beta 2-stimulatory effect. beta-Agonists were also capable of stimulating PRL release from superfused intact pituitaries. The beta-adrenergic response desensitized rapidly during prolonged exposure of the aggregates to beta-agonists.  相似文献   

18.
It has previously been reported that in the isolated cat superior cervical ganglion (SCG) labeled with tritiated norepinephrine (3H-NE), the stimulation of the preganglionic trunk at 10 Hz as well as the exposure to 100 microM exogenous acetylcholine (ACh), produced a Ca++-dependent release of 3H-NE. The present results show that a Ca++-dependent release of 3H-NE was produced also by exposure to either 50 microM veratridine or 60 mM KCl. Tetrodotoxin (0.5 microM) abolished the release of 3H-NE induced by preganglionic stimulation, ACh and veratridine but did not modify the release evoked by KCl. The metabolic distribution of the radioactivity released by the different depolarizing stimuli showed that the 3H-NE was collected mainly unmetabolized. In the cat SCG neither the release of 3H-NE evoked by KCl nor the endogenous content of NE was modified by pretreatment with 6-OH-dopamine (6-OH-DA). On the other hand, this chemical sympathectomy depleted the endogenous content of NE in the cat nictitating membrane, whose nerve terminals arise from the SCG. The data presented suggest that the depolarization-coupled release of NE from the cat SCG involves structures that are different to nerve terminals and that contain Na+ channels as well as Ca++ channels.  相似文献   

19.
The aim of the present study was to determine in canine bronchi the effects produced by norepinephrine (released from adrenergic nerve terminals) on cholinergic neurotransmission. Electrical stimulation of canine bronchi activates cholinergic and adrenergic nerve fibers. The adrenergic neuronal blocker, bretylium tosylate, inhibited the increase in [3H]norepinephrine overflow evoked by electrical stimulation but did not prevent that caused by the indirect sympathomimetic tyramine. During blockade of the exocytotic release of norepinephrine with bretylium, the pharmacological displacement of the sympathetic neurotransmitter by tyramine significantly decreased the contractions evoked by electrical stimulation but did not affect contractions caused by exogenous acetylcholine. Metoprolol, a beta 1-adrenergic antagonist, abolished and propranolol significantly reduced the effect of tyramine during electrical stimulation. alpha 2-Adrenergic blockade, beta 2-adrenergic blockade, or removal of the epithelium did not significantly affect the response to tyramine. These results suggest that norepinephrine when released from sympathetic nerve endings can activate prejunctional inhibitory beta 1-adrenoceptors to depress cholinergic neurotransmission in the bronchial wall.  相似文献   

20.
Presynaptic regulation of dopaminergic transmission in the striatum   总被引:1,自引:0,他引:1  
1. In vitro studies have indicated that several transmitters present in the striatum can regulate presynaptically the release of dopamine (DA) from nerve terminals of the nigrostriatal DA neurons. 2. The receptors involved in these local regulatory processes are located or not located on DA nerve terminals. 3. Recent in vivo investigations have demonstrated that the corticostriatal glutamatergic neurons facilitate presynaptically the release of DA and have allowed the analysis of the respective roles of presynaptic events and nerve activity in the control of DA transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号