首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The relationship between the growth spurt and the onset of sexual maturity is problematic in nonhuman primates. Growth data on the cranium and postcranium of dentally aged pygmy chimpanzees, common chimpanzees, and gorillas are reported here. In all three species, male means generally exceed female means throughout growth, with the exception that females exhibit a spurt during one dental-age stage when they become generally larger than the males. This female spurt occurs earlier in an absolute and relative sense in the gorillas than the chimpanzees. These growth data support field and laboratory observations suggesting that female gorillas become sexually mature earlier than do female chimpanzees. Gorillas are thus characterized by a greater degree of “sexual bimaturism” than are the chimpanzees. Implications of these differences in terms of size dimorphism, mating systems, and morphology are discussed.  相似文献   

2.
Baboons exhibit marked sexual dimorphism in many aspects of their morphology. Dimorphism is especially pronounced in the face. We use finite-element analysis to investigate the ontogeny of sexual dimorphism in a cross-sectional sample of baboon (Papio sp.) faces. This method provides detailed quantitative information about size and shape changes at anatomical landmarks in the face during growth. Allometric results suggest that sexual dimorphism in facial size and shape is produced by ontogenetic scaling: males and females share a common ontogenetic trajectory. Analyses of growth in time, which complement allometric analyses, show that female growth slows much earlier than male growth, accounting for the differences between sexes. Local size and local shape follow similar patterns of growth, but changes in these variables are slower in females. Local and global facial size are much more dimorphic than local and global facial shape.  相似文献   

3.
In this work allometry and heterochrony are integrated in an analysis of ontogenic and interspecific morphological patterns in the African apes. The relationship between the interspecific differences in adult morphology and the differences in underlying patterns of growth allometries, body weight growth rates, and developmental chronologies is investigated. Results indicate that rate hypermorphosis, or the extension of ancestral allometries into new size/shape ranges with no increase in the duration of ontogeny, underlies many of the interspecific differences in form among the African apes. In addition, the need for further clarification of the processes of heterochrony is stressed by distinguishing between rate and timing differences. These distinctions and processes are illustrated and discussed using the morphological data on the African apes.  相似文献   

4.
Studies of sexual dimorphism have traditionally focused on the static differences in size and shape between adult males and females. In this paper, I suggest that an investigation of the ontogenetic bases of sexual dimorphism can provide new insights and information unobtainable from studies concerned only with adult endpoints. While growth is often viewed as simply the developmental pathway utilized to attain final adult size and shape, we must recognize that it is the entire pattern of sex-differentiated growth, and not merely the adult endpoints, which is adaptive and the target of natural selection. The importance of an ontogenetic approach to the analysis of sexual dimorphism is also demonstrated by the fact that a given morphologicalresult (e.g., a certain degree of adult weight dimorphism) may be attained by very different developmentalprocesses, signalling selection for quite different factors. The need to analyze the ontogenetic bases of sexual dimorphism in size and shape has recently been recognized by Jarman, in his study of dimorphism in large terrestrial herbivores. Here I combine aspects of Jarman’s approach with those of allometry and heterochrony in an analysis of sexual dimorphism in selected anthropoid primates. It is demonstrated that although all dimorphic anthropoids appear to be characterized by somebimaturism, the degree varies significantly. Marked weight dimorphism in certain species is primarily produced by an increased differentiation of female and male growthrates, while in other species the primary change involves differences in thetime or duration of growth between the sexes. These variations are illustrated with anthropoid genera such asMiopithecus, Cercopithecus, Erythrocebus, Macaca, Papio, Pan, andGorilla. It is suggested that additional ontogenetic investigations of other anthropoids will help clarify some of the socioecological bases of this variation in the ways of attaining an adult dimorphic state. This will contribute to our understanding of the complex factors underlying and producing sexual dimorphism in primates and other mammals.  相似文献   

5.
6.
7.
The nature and basis of sexual dimorphism in the primate skeleton   总被引:3,自引:0,他引:3  
This study sets out to document and analyse sexual dimorphism in the teeth and bones of five primate groups, including man. Specimens were only included in the analysis if their sexual attribution was reliable and was based on non-osteological criteria. Ninety raw measurements, both cranial and post-cranial, were used and 11 indices were computed from them.
The parameters of each sample were computed in order to compare these results with previous estimates of dimorphism which have not always been based on reliably sexed samples. Correlation matrices were computed.
The overall sex differences were subdivided into "shape" and "size" components using Penrose's size and shape distances and by computing the principal components of each data set. The visually apparent shape differences were confirmed metrically and then examined to see whether they could be explained by allometric effects or whether there was evidence for sexual differences in growth patterns.
Using femur length as the independent variable, because of its correlation with overall size, allometric coefficients were computed for the logarithmically transformed data. The coefficients were in some cases very different between sexes but the majority did not achieve statistical significance. Of those that were significantly different only in Homo did such differences narrowly exceed the number that would be expected by chance alone.
As the vast majority of allometric coefficients for the pooled male and female data differed from unity, the hypothesis that most of the considerable shape differences that exist between some male and female primates are due to underlying growth differences must be rejected. It is suggested that such differences are simply the result of disproportionate change in size.  相似文献   

8.
A number of researchers have suggested a functional relationship between dietary variation and temporomandibular joint (TMJ) morphology, yet few studies have evaluated TMJ form in the African apes. In this study, I compare TMJ morphology in adults and during ontogeny in Gorilla (G.g. beringei, G.g. graueri, and G.g. gorilla) and Pan (P. paniscus, P. troglodytes troglodytes, P.t. schweinfurthii, and P.t. verus). I test two hypotheses: first, compared to all other African apes, G.g. beringei exhibits TMJ morphologies that would be predicted for a primate that consumes a diet comprised primarily of moderately to very tough, leafy vegetation; and second, all gorillas exhibit the same predicted morphologies compared to Pan. Compared to all adult African apes, G.g. beringei has higher rami and condyles positioned further above the occlusal plane of the mandible, relative to jaw length. Thus, mountain gorillas have the potential to generate relatively more muscle force, more evenly distribute occlusal forces along the postcanine teeth, and generate relatively greater jaw adductor moment. G.g. beringei also exhibits relatively wider mandibular condyles, suggesting these folivorous apes are able to resist relatively greater compressive loads along the lateral and/or medial aspect of the condyle. All gorillas likewise exhibit these same shape differences compared to Pan. These morphological responses are the predicted consequences of intensification of folivory and, as such, provide support for functional hypotheses linking these TMJ morphologies to degree of folivory. The African apes to not, however, demonstrate a systematic pattern of divergence in relative condylar area as a function of intensification of folivory. The ontogenetic trajectories for gorillas are significantly elevated above those of Pan, and to a lesser but still significant degree, mountain gorillas similarly deviate from lowland gorillas (G.g. gorilla and G.g. graueri). Thus, adult shape differences in ramal and condylar heights do not result from the simple extrapolation of common growth allometries relative to jaw length. As such, they are suggestive of an adaptive shift towards a tougher, more folivorous diet. However, the allometric patterning for condylar area and condylar width does not systematically conform to predictions based on dietary specialization. Thus, while differences in condylar shapes may confer functional advantages both during growth and as adults, there is no evidence to suggest selection for altered condylar proportions, independent of the effects of changes in jaw size.  相似文献   

9.
10.
Molecular data suggest that humans are more closely related to chimpanzees than either is to the gorillas, yet one finds the closest similarity in craniofacial morphology to be among the great apes to the exclusion of humans. To clarify how and when these differences arise in ontogeny, we studied ontogenetic trajectories for Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. A total of 96 traditional three-dimensional landmarks and semilandmarks on the face and cranial base were collected on 268 adult and sub-adult crania for a geometric morphometric analysis. The ontogenetic trajectories are compared by various techniques, including a new method, relative warps in size-shape space. We find that adult Homo sapiens specimens are clearly separated from the great apes in shape space and size-shape space. Around birth, Homo sapiens infants are already markedly different from the great apes, which overlap at this age but diverge among themselves postnatally. The results suggest that the small genetic differences between Homo and Pan affect early human ontogeny to induce the distinct adult human craniofacial morphology. Pure heterochrony does not sufficiently explain the human craniofacial morphology nor the differences among the African apes.  相似文献   

11.
This study examines statistical correlations between socioecological variables (including measures of group composition, intermale competition, and habitat preference) and the ontogeny of body size sexual dimorphism in anthropoid primates. A regression-based multivariate measure of dimorphism in body weight ontogeny is derived from a sample of 37 species. Quantitative estimates of covariation between socioecological variables and this multivariate measure are evaluated. Statistically significant covariation between the ontogeny of dimorphism and socioecological variables, with the possible exception of habitat preference, is observed. Sex differences in ontogeny are lacking in species that exhibit low levels of intermale competition and are classifiable as species with monogamous/polyandrous mating systems. Among dimorphic species, two modes of dimorphic growth are apparent, which seem to be related to different kinds of group compositions. Multimale/multifemale species tend to become dimorphic through bimaturism (sex differences in duration of growth) with minimal sex differences in growth rate. Single-male/multifemale species tend to attain dimorphism through differences in rate of growth, often with limited bimaturism. Measures of intermale competition may also covary with these modes of dimorphic growth, but the relations among these variables are sometimes ambiguous. Correlations between dimorphic growth and behavioral variables may reflect alternative life history strategies in primates. Specifically, the ways in which risks faced by subadult males are distributed and the relations of these risks to growth rates seem to influence the evolution of size ontogenies. The absence of dimorphic ontogeny in some species can be tied to similar distributions of risk in each sex. In taxa that become dimorphic primarily through rate differences in growth, the lifetime distribution of risks for males may change rapidly. In contrast, males may face a pattern of uniformly changing or stable risk in species that become dimorphic through bimaturism. Finally, much variation recorded by this study remains unexplained, providing additional evidence of the need to specially examine female ontogeny before primate body size dimorphism can be satisfactorily explained. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Facial symmetry has been proposed as a marker of developmental stability that may be important in human mate choice. Several studies have demonstrated positive relationships between facial symmetry and attractiveness. It was recently proposed that symmetry is not a primary cue to facial attractiveness, as symmetrical faces remain attractive even when presented as half faces (with no cues to symmetry). Facial sexual dimorphisms ('masculinity') have been suggested as a possible cue that may covary with symmetry in men following data on trait size/symmetry relationships in other species. Here, we use real and computer graphic male faces in order to demonstrate that (i) symmetric faces are more attractive, but not reliably more masculine than less symmetric faces and (ii) that symmetric faces possess characteristics that are attractive independent of symmetry, but that these characteristics remain at present undefined.  相似文献   

13.
1079 male fetuses and 727 female fetuses at the age of 20 to 41 weeks were investigated for the process of asymmetry and sexual dimorphism of lungs weight formation as well as developmental correlation between the weight of the lungs and the size of the heart. Statistical analysis of the results was applied. It was ascertained, among others, that asymmetry of lungs weight occurs in the investigated developmental period--the right lung is heavier than the left one about 20 to 30%. Between the increase in the weight of the lungs and the size of the heart positive correlation occurs, but it is not of directed character. A substantial, intersexual differentiation of lungs weight was not ascertained.  相似文献   

14.
A large sample of hip bones of known sex coming from one modern population is studied morphologically and by multivariate analysis to investigate sexual dimorphism patterns. A principal component analysis of raw data shows that a large amount of the hip bone sexual dimorphism is accounted for by size differences, but that sex-linked shape variation is also very conspicuous and cannot be considered an allometric consequence of differences in body size between the sexes. The PCA of transformed (“shape”) variables indicates that the female hip bones are different in those traits associated with a relatively larger pelvic inlet (longer pubic bones, a greater degree of curvature of the iliopectineal line, and a more posterior position of the auricular surface), as well as a broader sciatic notch. The analysis of nonmetric traits also shows marked sexual dimorphism in the position of the sacroiliac joint in the iliac bone, in the shape of the sciatic notch, in pubic morphology, and in the presence of the pre-auricular sulcus in females. When the australopithecine AL 288-1 and Sts 14 hip bones are included in the multivariate analysis, they appear as “ultra-females.” In particular these early hominids exhibit extraordinarily long pubic bones and iliopectineal lines, which cannot be explained by allometry. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Abstract.— Sexual size dimorphism (SSD) is the evolutionary result of selection operating differently on the body sizes of males and females. Anolis lizard species of the Greater Antilles have been classified into ecomorph classes, largely on the basis of their structural habitat (perch height and diameter). We show that the major ecomorph classes differ in degree of SSD. At least two SSD classes are supported: high SSD (trunk-crown, trunk-ground) and low SSD (trunk, crown-giant, grass-bush, twig). Differences cannot be attributed to an allometric increase of SSD with body size or to a phylogenetic effect. A third explanation, that selective pressures on male and/or female body size vary among habitat types, is examined by evaluating expectations from the major relevant kinds of selective pressures. Although no one kind of selective pressure produces expectations consistent with all of the information, competition with respect to structural habitat and sexual selection pressures are more likely possibilities than competition with respect to prey size or optimal feeding pressures. The existence of habitat-specific sexual dimorphism suggests that adaptation of Anolis species to their environment is more complex than previously appreciated.  相似文献   

16.
Ontogenetic scaling has been hailed as an explanation of the differences in craniofacial morphology between adult males and females of a number of non human primate species. This inference has implications for the evolutionary processes underlying patterns of sexual variation, as several heterochronic processes (rate and time hypo- and hypermorphosis) predict ontogenetic scaling. Primary among species for which ontogenetic scaling of craniofacial dimensions has been claimed is Alouatta palliata , the mantled howling monkey. This study uses a variety of analytical tools to explore the efficacy of ontogenetic scaling as an explanatory paradigm for this classic example. Multivariate analysis captures shape far better than does bivariate analysis. However, multivariate analysis does not support the traditional inference of ontogenetic scaling. Explanations for contradictory results are considered.  相似文献   

17.
We present body mass (N = 419) and crown-rump length (CRL, N = 210) measurements from 38 male and 49 female mandrills born into a semifree-ranging colony in order to describe growth from birth to adulthood, and to investigate maternal influences upon growth. Adult male mandrills are 3.4 times the body mass, and 1.3 times the CRL, of adult females. Body mass dimorphism arises from a combination of sex differences in length of the growth period (females attain adult body mass at 7 years, males at 10 years) and growth rate. Both sexes undergo a subadult growth spurt in body mass, and this is much more dramatic in males (peak velocity 551 g/months +/- 89 SEM at 84-96 months). CRL dimorphism arises from bimaturism (females attain adult CRL at 6 years, males after 10 years), and neither sex shows a particular subadult growth spurt in CRL. Sexual size dimorphism thus represents important time and metabolic costs to males, who mature physically approximately 3-4 years after females. Considerable interindividual variation occurs in the size-for-age of both sexes, which is related to maternal variables. Older mothers have heavier offspring than do younger mothers, and higher-ranking mothers have heavier offspring than do lower ranking mothers. Mass advantages conferred upon offspring during lactation by older and higher-ranking mothers tend to persist postweaning in both sexes. Thus maternal factors affect reproductive success in both sexes, influencing the age at which offspring mature and begin their reproductive career.  相似文献   

18.
Differences among taxa in sexual size dimorphism of adults can be produced by changes in distinct developmental processes and thus may reflect different evolutionary histories. Here we examine whether divergence in sexual dimorphism of adults between recently established Montana and Alabama populations of the house finch (Carpodacus mexicanus) can be attributed to population differences in growth of males and females. In both populations, males and females were similar at hatching, but as a result of sex-specific growth attained sexual size dimorphism by the time of independence. Timing and extent of growth varied between the sexes: Females maintained maximum rates of growth for a longer time than males, whereas males had higher initial growth rates and achieved maximum growth earlier and at smaller sizes than females. Ontogeny of sexual dimorphism differed between populations, but in each population, sexual dimorphism in growth parameters and sexual dimorphism at the time of nest leaving were similar to sexual dimorphism of adults. Variation in growth of females contributed more to population divergence than did growth of males. In each population, we found close correspondence between patterns of sexual dimorphism in growth and population divergence in morphology of adults: Traits that were the most sexually dimorphic in growth in each population contributed the most to population divergence in both sexes. We suggest that sex-specific expression of phenotypic and genetic variation throughout the ontogeny of house finches can result in different responses to selection between males and females of the same age, and thus produce fast population divergence in the sexual size dimorphism.  相似文献   

19.
Populations of Diaptomus leptopus (Copepoda: Calanoida) and other calanoid copepods exhibit varying degrees of sexual size dimorphism. We examined whether intraspecific or interspecific variation in dimorphism could be explained by allometry, and we examined the relationship between adult size attained and development rate to determine any relationship between the two. We compared the degree of sexual size dimorphism in D. leptopus and in other calanoid copepods inhabiting temporary and permanent habitats. Allometry did not explain variation in sexual size dimorphism within or among populations or among species. Permanence of habitat affected the degree of dimorphism: dimorphism was greater within and among species inhabiting temporary environments. Non-significant differences in development rate were found among populations and significant differences were found between sexes of D. leptopus when reared under identical laboratory conditions: males developed more rapidly than females but there was no general relationship between development rate and adult size. Potential adaptive hypotheses to explain the differences between populations inhabiting temporary and permanent habitats are discussed.  相似文献   

20.
Sexual dimorphism is responsible for a substantial part of human facial variability, the study of which is essential for many scientific fields ranging from evolution to special biomedical topics. Our aim was to analyse the relationship between size variability and shape facial variability of sexual traits in the young adult Central European population and to construct average surface models of adult males and females. The method of geometric morphometrics allowed not only the identification of dimorphic traits, but also the evaluation of static allometry and the visualisation of sexual facial differences.Facial variability in the studied sample was characterised by a strong relationship between facial size and shape of sexual dimorphic traits. Large size of face was associated with facial elongation and vice versa. Regarding shape sexual dimorphic traits, a wide, vaulted and high forehead in combination with a narrow and gracile lower face were typical for females. Variability in shape dimorphic traits was smaller in females compared to males. For female classification, shape sexual dimorphic traits are more important, while for males the stronger association is with face size.Males generally had a closer inter-orbital distance and a deeper position of the eyes in relation to the facial plane, a larger and wider straight nose and nostrils, and more massive lower face. Using pseudo-colour maps to provide a detailed schematic representation of the geometrical differences between the sexes, we attempted to clarify the reasons underlying the development of such differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号