首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low levels of high density lipoprotein cholesterol (HDL-C) are associated with increased risk of coronary heart disease and, in the United States, are often associated with hypertriglyceridemia and obesity. In Turkey, low HDL-C levels are highly prevalent, 53% of men and 26% of women having HDL-C levels <35 mg/dl, in the absence of hypertriglyceridemia and obesity. In this study to investigate the cause of low HDL-C levels in Turks, various factors affecting HDL metabolism were assessed in normotriglyceridemic Turkish men and women living in Istanbul and in non-Turkish men and women living in San Francisco. Turkish men and women had significantly lower HDL-C levels than the San Francisco men and women, as well as markedly lower apolipoprotein A-I levels (25 and 39 mg/dl lower, respectively). In both Turkish and non-Turkish subjects, the mean body mass index was <27 kg/m2, the mean triglyceride level was <120 mg/dl, and the mean total cholesterol was 170-180 mg/dl. The mean hepatic triglyceride lipase activity was 21% and 31% higher in Turkish men and women, respectively, than in non-Turkish men and women, and remained higher even after subjects with a body mass index >50th percentile for men and women in the United States were excluded from the analysis. As no dietary or behavioral factors have been identified in the Turkish population that account for increased hepatic triglyceride lipase activity, the elevation most likely has a genetic basis. high density lipoprotein in a normotriglyceridemic, nonobese Turkish population.  相似文献   

2.
3.
We have studied the effects of triiodothyronine administration (20-40 micrograms three times daily over one week) in six healthy young men, on the activities of lipoprotein lipase and hepatic lipase and on plasma lipoprotein concentrations. Hepatic lipase activity in post-heparin plasma rose by 46 +/- 25% (p less than 0.025), whereas the activity of lipoprotein lipase did not change significantly. Plasma cholesterol concentrations decreased by about 20% (p less than 0.025), whereas there was no change in plasma triglyceride levels. The fall in plasma cholesterol could be accounted for by a reduction of HDL cholesterol (-11%, p less than 0.025) as well as LDL cholesterol (-27%, p less than 0.025). The data emphasize the role of hepatic lipase in the lipoprotein alterations associated with thyroid dysfunction.  相似文献   

4.
Human high density lipoproteins2 (HDL2) consist of particles that contain both apolipoprotein (apo) A-I and apoA-II (A-I/A-II-HDL2) and others that contain apoA-I but are devoid of apoA-II (A-I-HDL2). When postprandial lipemia is pronounced, a fraction of HDL2 is converted into HDL2-like particles. These HDL3 exhibit lower apoA-I/apoA-II ratios than the parent HDL2, suggesting preferential conversion of A-I/A-II-HDL2 into HDL3 (J. Clin. Invest. 1984. 74: 2017-2023). Triglyceride transfer from triglyceride-rich lipoproteins to HDL2 and subsequent lipolysis by hepatic lipase are thought to mediate the conversion of HDL2 into HDL3. To understand why A-I/A-II-HDL2 are preferentially converted into HDL3, we separated postprandial HDL2 into A-I-HDL2 and A-I/A-II-HDL2 species by immunoaffinity chromatography using a monoclonal antibody for apoA-II, and determined the ability of HDL2 species i) to participate in protein-mediated lipid transfer; and ii) to interact with hepatic lipase in vitro. Triglyceride transfer from/to triglyceride-rich lipoproteins was similar for the two HDL2 species. In contrast, A-I/A-II-HDL2 were twice as effective as A-I-HDL2 in liberating hepatic lipase immobilized on HDL3-Sepharose. Lipolysis of triglycerides by hepatic lipase was 60% higher in postprandial A-I/A-II-HDL2 than in postprandial A-I-HDL2. Hydrolysis of phosphatidylcholine by hepatic lipase was threefold higher in A-II-containing HDL2 when compared with HDL2 devoid of apoA-II. The different lipolytic rates in HDL2 subspecies correlated with the size reduction of substrate lipoproteins. Reconstitution of postprandial A-I-HDL2 with apoA-II enhanced the rate of lipolysis by hepatic lipase to that observed in A-I/A-II-HDL2. We conclude that it is the interaction with hepatic lipase rather than the rate of triglyceride transfer that results in the preferred conversion of postprandial A-II-containing HDL2 into HDL3, and that apoA-II exerts a crucial role in this process.  相似文献   

5.
Plasma post-heparin hepatic lipase (PHHL) activity, plasma lipids, and high density lipoprotein cholesterol (HDL-C) levels, pulse rate at submaximal workload, and body weight were measured in 12 men during the 18 weeks physical training for their first marathon run. Reduced pulse rate at submaximal workload indicated that the men increased their physical fitness during the training period. Plasma HDL-C levels (+27%) and PHHL activity (+29%) also increased significantly after 18 weeks training. These changes were not in accord with the inverse correlation between plasma HDL-C levels and PHHL activity which was observed before training. The results of this study do not support the concept that reduced PHHL activity is mainly responsible for increased levels of plasma HDL-C with training.  相似文献   

6.
High density lipoproteins were isolated from plasma of white Leghorn hens by ultracentrifugal flotation between densities 1.063 and 1.210 g/ml. After delipidation, the lipid-free proteins were fractionated by chromatography on Sephadex G-150 in urea; one major apolipoprotein was isolated and characterized. From its chemical, physical and immunochemical properties, the major apoprotein from hen high-density lipoproteins has characteristics similar to the major apoprotein of human high density lipoproteins, apoA-I. Thus the hen protein has been designated hen apoA-I. Hen apoA-I has a molecular weight of approximately 28 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Its calculated molecular weight from its 234 constituent amino acids is 26 674. Hen apoA-I differed from its human counterpart by containing isoleucine. Treatment of hen apoA-I with carboxypeptidase A yielded a COOH-terminal sequence of Leu-Val-Ala-Gln. Automatic Edman degradation of the apoprotein gave an NH2-terminal sequence of Asp-Glu-Pro-Gln-Pro-Glu-Leu. Hen apoA-I had a circular dichroic spectrum typical of alpha-helical structures; the calculated helicity was 90%. Goat antisera prepared to hen apoA-I formed precipitin lines of complete identity to the hen apoprotein but lines of only partial identity to human apoA-I. These studies show that the major apoprotein from hen and human high-density lipoproteins have similar properties to each other suggesting a common physiologic function.  相似文献   

7.
We have demonstrated that low and high density lipoproteins from monkey plasma are capable of accepting and accumulating monoacylglycerol that is formed by the action of lipoprotein lipase on monkey lymph very low density lipoproteins. Furthermore, the monoacylglycerol that accumulates in both low and high density lipoproteins is not susceptible to further hydrolysis by lipoprotein lipase but is readily degraded by the monoacylglycerol acyltransferase of monkey liver plasma membranes. These observations suggest a new mechanism for monoacylglycerol transfer from triacylglycerol rich lipoproteins to other lipoproteins. In addition, the finding that monoacylglycerol bound to low and high density lipoprotein is degraded by the liver enzyme but not lipoprotein lipase lends support to the hypothesis that there are distinct and consecutive extrahepatic and hepatic stages in the metabolism of triacylglycerol in plasma lipoproteins.  相似文献   

8.
Hepatic lipase deficiency produces significant distortion in the plasma lipoprotein profile. Particles with reduced electrophoretic mobility appear in very low density lipoprotein (VLDL). Intermediate density lipoprotein (IDL) increases markedly in the circulation and plasma low density lipoprotein (LDL) levels fall. At the same time there is a mass redistribution within the high density lipoprotein (HDL) spectrum leading to dominance in the less dense HDL2 subfraction. The present study examines apolipoprotein B turnover in a patient with hepatic lipase deficiency. The metabolism of large and small very low density lipoproteins was determined in four control subjects and compared to the pattern seen in the patient. Absence of the enzyme did not affect the rate at which large very low density lipoproteins were converted to smaller particles within this density interval (i.e., of VLDL). However, subsequent transfer of small very low density lipoproteins to intermediate density particles was retarded by 50%, explaining the abnormal accumulation of VLDL in the patient's plasma. Despite this, intermediate density particles accumulated to a level 2.4-times normal because their subsequent conversion to low density lipoprotein has been almost totally inhibited. Consequently, the plasma concentration of low density lipoprotein was only 10% of normal. On the basis of these observations, hepatic lipase appears to be essential for the conversion of small very low density and intermediate density particles to low density lipoproteins. The pathways of direct plasma catabolism of these species were not affected by the enzyme defect. In vitro studies were performed by adding purified hepatic lipase to the patient's plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Apolipoprotein E (apoE) plays a major role in lipoprotein metabolism by mediating the binding of apoE-containing lipoproteins to receptors. The role of hepatic apoE in the catabolism of apoE-free lipoproteins such as low density lipoprotein (LDL) and high density lipoprotein-3 (HDL(3)) is however, unclear. We analyzed the importance of hepatic apoE by comparing human LDL and HDL(3) metabolism in primary cultures of hepatic cells from control C57BL/6J and apoE knockout (KO) mice. Binding analysis showed that the maximal binding capacity (Bmax) of LDL, but not of HDL(3), is increased by twofold in the absence of apoE synthesis/secretion. Compared to control hepatic cells, LDL and HDL(3) holoparticle uptake by apoE KO hepatic cells, as monitored by protein degradation, is reduced by 54 and 77%, respectively. Cleavage of heparan sulfate proteoglycans (HSPG) by treatment with heparinase I reduces LDL association by 21% in control hepatic cells. Thus, HSPG alone or a hepatic apoE-HSPG complex is partially involved in LDL association with mouse hepatic cells. In apoE KO, but not in normal hepatic cells, the same treatment increases LDL uptake/degradation by 2.4-fold suggesting that in normal hepatic cells, hepatic apoE increases LDL degradation by masking apoB-100 binding sites on proteoglycans. Cholesteryl ester (CE) association and CE selective uptake (CE/protein association ratio) from LDL and HDL(3) by mouse hepatic cells were not affected by the absence of apoE expression. We also show that 69 and 72% of LDL-CE hydrolysis in control and apoE KO hepatic cells, respectively, is sensitive to chloroquine revealing the importance of a pathway linked to lysosomes. In contrast, HDL(3)-CE hydrolysis is only mediated by a nonlysosomal pathway in both control and apoE KO hepatic cells. Overall, our results indicate that hepatic apoE increases the holoparticle uptake pathway of LDL and HDL(3) by mouse hepatic cells, that HSPG devoid of apoE favors LDL binding/association but impairs LDL uptake/degradation and that apoE plays no significant role in CE selective uptake from either human LDL or HDL(3) lipoproteins.  相似文献   

10.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

11.
Very low density lipoproteins ere isolated from plasma of swine by ultracentrifugal flotation. After delipidation, the lipid-free proteins were separated by chromatography on Sephadex G-150 AND DEAE-cellulose. A major apoprotein was isolated and shown to activate cows' milk lipoprotein lipase. Since human very low density lipoproteins also contain an activator protein, designated, apoC-II, we have called the pig protein, pig apoC-II. Pig apoC-II had a molecular weight of approximately 10 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The amino acid composistion showed the absence of histidine, cysteine and tryptophan; there was no evidence for carbohydrate. Treatment of pig apoC-II with carboxypeptidase indicated COOH-terminal serine. Rabbit antisera prepared to the pig protein gave single precipitin lines of complete identity to very low density lipoproteins, apoC-11. Using anti-pig apoC-II, a radioimmunoassay was developed which provides a convenient and reproducible method for measuring 5-1000 ng of apoprotein.  相似文献   

12.
High density lipoproteins were isolated from plasma of white Leghorn hens by ultracentrifugal flotation between densities 1.063 and 1.210 g/ml. After delipidation, the lipid-free proteins were fractionated by chromatography on Sephadex G-150 in urea; one major apolipoprotein was isolated and characterized. From its chemical, physical and immunochemical properties, the major apoprotein from hen high-density lipoproteins has characteristics similar to the major apoprotein of human high density lipoproteins, apoA-I. Thus the hen protein has been designated hen apoA-I.Hen apoA-I has a molecular weight of approximately 28 000 as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Its calculated molecular weight from its 234 constituent amino acids is 26 674. Hen apoA-I differed from its human counterpart by containing isoleucine. Treatment of hen apoA-I with carboxypeptidase A yielded a COOH-terminal sequence of Leu-Val-Ala-Gln. Automatic Edman degradation of the apoprotein gave an NH2-terminal sequence of Asp-Glu-Pro-Gln-Pro-Glu-Leu. Hen apoA-I had a circular dichroic spectrum typical of α-helical structures; the calculated helicity was 90%. Goat antisera prepared to hen apoA-I formed precipitin lines of complete identity to the hen apoprotein but lines of only partial identity to human apoA-I. These studies show that the major apoprotein from hen and human high-density lipoproteins have similar properties to each other suggesting a common physiologic function.  相似文献   

13.
These studies examined the proposition that the small particle size of HDL3 in the plasma of hypertriglyceridemic subjects is the consequence of the sequential actions of lipid transfer protein and hepatic lipase on HDL. Incubation of unmodified total HDL or HDL3 in the presence of hepatic lipase resulted in a depletion of phospholipid, but little change in the size of the particles. On the other hand, HDL3 that had first been depleted of cholesteryl ester and enriched with triglyceride and phospholipid, during prior incubation with Intralipid and a source of lipid transfer protein, were much more susceptible to the action of hepatic lipase. When these modified HDL3 were incubated with hepatic lipase there was a depletion of the triglyceride and phospholipid content and a conversion into much smaller particles the same size as those predominant in hypertriglyceridemic subjects. These very small particles were derived from a population of modified particles that were larger than the original HDL3 and were within the size range of HDL2. It is proposed, therefore, that in the plasma of hypertriglyceridemic subjects there exists a dynamic balance between the formation of enlarged triglyceride-rich HDL and a secondary conversion of these particles by hepatic lipase to form populations of very small HDL.  相似文献   

14.
Human lipoprotein lipase and hepatic triglyceride lipase were purified to homogeneity from post-heparin plasma. These enzymes were purified 250,000- and 100,000-fold with yields of 27 +/- 15 and 19 +/- 6%, respectively. Molecular weight determination by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and reducing agents yielded Mr of 60,500 +/- 1,800 and 65,200 +/- 400, respectively, for lipoprotein lipase and hepatic triglyceride lipase. These lipase preparations were shown to be free of detectable antithrombin by measuring its activity and by probing of Western blots of lipases with a monospecific antibody against antithrombin. In additions, probing of Western blots with concanavalin A revealed no glycoproteins corresponding to the molecular weight of antithrombin. Four stable hybridoma-producing distinct monoclonal antibodies (mAb) to hepatic triglyceride lipase were isolated. The specificity of one mAb, HL3-5, was established by its ability to immunoprecipitate hepatic triglyceride lipase catalytic activity. Interaction of HL3-5 with this lipase did not inhibit catalytic activity. The three other mAb interacted with hepatic triglyceride lipase only after denaturation of the enzyme with detergents. The relatedness of these two enzymes was examined by comparing under the same conditions the thermal inactivation, the sensitivity to sulfhydryl and reducing agents, amino acid composition, and the mobility of peptide fragments generated by cyanogen bromide cleavage. The results of these studies strongly support the view that the two enzymes are different proteins. Immunological studies confirm this conclusion. Four mAb to hepatic triglyceride lipase did not interact with lipoprotein lipase in Western blots, enzyme-linked immunosorbent assay, and immunoprecipitation experiments. These immunological studies demonstrate that several epitopes of the hepatic triglyceride lipase protein moiety are not present in the lipoprotein lipase molecule.  相似文献   

15.
Zhang X  Chen B 《Biological chemistry》2011,392(5):423-429
It has been shown that apolipoprotein A-V (apoA-V) over-expression significantly lowers plasma triglyceride levels and decreases atherosclerotic lesion development. To assess the feasibility of recombinant high density lipoprotein (rHDL) reconstituted with apoA-V and apolipoprotein A-I (apoA-I) as a therapeutic agent for hyperlipidemic disorder and atherosclerosis, a series of rHDL were synthesized in vitro with various mass ratios of recombinant apoA-I and apoA-V. It is interesting to find that apoA-V of rHDL had no effect on lipoprotein lipase (LPL) activation in vitro and very low density lipoprotein (VLDL) clearance in HepG2 cells and in vivo. By contrast, LPL activation and VLDL clearance were inhibited by the addition of apoA-V to rHDL. Furthermore, the apoA-V of rHDL could not redistribute from rHDL to VLDL after incubation at 37°C for 30 min. These findings suggest that an increase of apoA-V in rHDL could not play a role in VLDL clearance in vitro and in vivo, which could, at least in part, attribute to the lost redistribution of apoA-V from rHDL to VLDL and LPL binding ability of apoA-V in rHDL. The therapeutic application of rHDL reconstituted with apoA-V and apoA-I might need the construction of rHDL from which apoA-V could freely redistribute to VLDL.  相似文献   

16.
17.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   

18.
To localize the regions of lipoprotein lipase (LPL) that are responsive to activation by apoC-II, an apoC-II peptide fragment was cross-linked to bovine LPL. Following chemical hydrolysis and peptide separation, a specific fragment of LPL (residues 65-86) was identified to interact with apoC-II. The fragment contains regions of amino acid sequence dissimilarity compared with hepatic lipase (HL), a member of the same gene family that is not responsive to apoC-II. Using site-directed mutagenesis, two sets of chimeras were created in which the two regions of human LPL (residues 65-68 and 73-79) were exchanged with the corresponding human HL sequences. The chimeras consisted of an HL backbone with the suspected LPL regions replacing the corresponding HL sequences either individually (HLLPL-(65-68) and HLLPL-(73-79)) or together (HLLPLD). Similarly, LPL chimeras were created in which the candidate regions were replaced with the corresponding HL sequences (LPLHL-(77-80), LPLHL-(85-91), and LPLHLD). Using a synthetic triolein substrate, the lipase activity of the purified enzymes was measured in the presence and absence of apoC-II. Addition of apoC-II to HLLPL-(65-68) and HLLPL-(73-79) did not significantly alter their enzyme activity. However, the activity of HLLPLD increased approximately 5-fold in the presence of apoC-II compared with an increase in native LPL activity of approximately 11-fold. Addition of apoC-II to LPLHL-(77-80) resulted in approximately 10-fold activation, whereas only approximately 6- and approximately 4-fold activation of enzyme activity was observed in LPLHL-(85-91) and LPLHLD, respectively. In summary, our results have identified 11 amino acid residues in the N-terminal domain of LPL (residues 65-68 and 73-79) that appear to act cooperatively to enable substantial activation of human LPL by apoC-II.  相似文献   

19.
Summary Lipoprotein lipase (LPL) plays a central role in the metabolism of lipoproteins by hydrolyzing the core triglycerides of circulating very low density lipoproteins and chylomicrons. The enzyme is encoded by a gene about 30kb in size located on the short arm of human chromosome 8. We have determined the locations of the four common DNA polymorphisms along the gene, including a polymorphism that occurred only among an American black population examined. These restriction site polymorphisms were used for haplotype analysis of Mediterranean and US black families. Estimation of the extent of nonrandom association between these polymorphisms indicated considerable linkage disequilibrium between these sites. No correlation was observed between the level of linkage disequilibrium and the physical distance of the polymorphic sites. The polymorphism information content of the haplotypes ranged from 0.65 to 0.74, thereby constituting a relatively useful genetic marker on chromosome 8. We tested for possible associations between the polymorphisms and circulating lipoprotein phenotypes in a population of 139 Caucasians undergoing coronary arteriography and 50 of their spouses. Some possibly significant associations between LPL gene polymorphisms and levels of high density lipoprotein cholesterol (P = 0.015) and total plasma cholesterol (P = 0.025) were observed. In contrast to a previous report, we found no significant associations with the levels of plasma triglycerides.  相似文献   

20.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号