首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
This study compares the performance of anaerobic digestion of fruit and vegetable waste (FVW) in the thermophilic (55 °C) process with those under psychrophilic (20 °C) and mesophilic (35 °C) conditions in a tubular anaerobic digesters on a laboratory scale. The hydraulic retention time (HRT) ranged from 10 to 20 days, and raw fruit and vegetable waste was supplied in a semi-continuous mode at various concentrations of total solids (TS) (4, 6, 8 and 10% on dry weight). Biogas production from the experimental thermophilic digester was higher on average than from psychrophilic and mesophilic digesters by 144 and 41%, respectively. The net energy production in the thermophilic digester was 195.7 and 49.07 kJ per day higher than that for the psychrophilic and mesophilic digesters, respectively. The relation between the daily production of biogas and the temperature indicates that for the same produced quantity of biogas, the size of the thermophilic digester can be reduced with regard to that of the psychrophilic and the mesophilic digesters.  相似文献   

2.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g−1 total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).  相似文献   

3.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and activated sludge (AS) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of AS:FVW ratio and the organic loading rate (OLR) on digesters performances were examined. The mixtures having AS:FVW ratios of 100:00, 65:35, 35:65, by a total solid (TS) basis were operated at an hydraulic retention time (HRT) of 20d. However, 30:70, 20:80, 15:85, 10:90 and 0:100 ratios were tested at an HRT of 10d. To investigate effects of aerobic and anaerobic digestion on the sludge filterability, specific resistance to filtration (R) was also determined. Increasing FVW proportions in the feedstock significantly improved the biogas production yield. The reactor that was fed with a 30:70 ratio showed the highest VS removal and biogas production yield of 88% and 0.57 L g(-1) VS added, respectively. The filterability results showed that the anaerobic effluent was characterised by a slightly better filterability efficiency of 1.6 x 10(16) m kg(-1) than 1.74 x 10(16) m kg(-1) of aerobic effluent. However, FVW addition improved the anaerobic co-digestion effluent filterability (5.52 x 10(14) m kg(-1)).  相似文献   

4.
Anaerobic co-digestion is a well established process for treating many types of organic wastes, both solid and liquid. In this study we have investigated, on a laboratory scale, the anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW) using semi-continuous, feeding, tubular digesters operated at mesophilic temperatures. Each digester was fed with an influent, composed of OMW and OMSW, at an organic loading rate (OLR) varying between 0.67 and 6.67 g COD/l/d. The hydraulic retention times (HRT) were 12, 24 and 36 days. The TCOD concentrations of OMW used as the main substrate were 24, 56 and 80 g COD/l; the amount of the dry OMSW used as a co-substrate was fixed to approximately 56 g/l of OMW. The results indicated that the best methane production was about 0.95 l/l/day obtained at an OLR = 4.67 g COD/l/d, corresponding to influent TCOD = 56 g COD/l at an HRT = 12d. In contrast, the maximum TCOD removal efficiency (89%) was achieved at an OLR = 0.67 g COD/l/d, corresponding to influent TCOD = 24 g COD/l at an HRT = 36 d. Moreover, the inhibition of biogas production was observed at the highest OLR studied.  相似文献   

5.
The performance of a 1 m3 daily gas-production-capacity, modified, Deenbandhu biogas plant was evaluated under hilly conditions. The modified plant had a digester volume of 2·65 m3 with 55 days hydraulic retention time (HRT) as against a volume of 2·45 m3 with 50·96 days HRT of the Action for Food Production (AFPRO) design. All the constructional items used in the modified plant were in accordance with the recommendations of AFPRO except the number of bricks, i.e. 625 in the modified design as against 800 in the AFPRO design. The rates of biogas production in October 1993 and January 1994 were 0·0357 and 0·0282 m3/kg feed (wet weight of dung); respectively. Thus the modified plant had a gas production efficiency of 70·5–89·4% of its rated capacity. All other functional parameters were within the optimum limits recommended for successful operation of any anaerobic digester.  相似文献   

6.
The effect of mixing on biogas production of a 1.5‐m3 pilot continuous stirred tank reactor (CSTR) processing screened dairy manure was evaluated. Mixing was carried out by recirculation of reactor content with a mono pump. The experiment was conducted at a controlled temperature of 37±1°C and hydraulic retention times (HRTs) of 20 and 10 days. The effect of continuous and intermittent operation of the recirculation pump on biogas production was studied. At 10 days of HRT, the results showed a minimal influence of recirculation rate on biogas production and that continuous recirculation did not improve reactor performance. At 20 days of HRT, the recirculation rate did not affect reactor performance. Combination of low solid content in feed animal slurry and long HRTs results in minimal mixing requirements for anaerobic digestion.  相似文献   

7.
Limited oxygen supply to anaerobic sludge digesters to remove hydrogen sulphide from biogas was studied. Micro-oxygenation showed competitive performance to reduce considerably the additional equipment necessary to perform biogas desulphurization. Two pilot-plant digesters with an HRT of ∼20 d were micro-oxygenated at a rate of 0.25 NL per L of feed sludge with a removal efficiency higher than 98%. The way of mixing (sludge or biogas recirculation) and the point of oxygen supply (headspace or liquid phase) played an important role on hydrogen sulphide oxidation. While micro-oxygenation with sludge recirculation removed only hydrogen sulphide from the biogas, dissolved sulphide was removed if micro-oxygenation was performed with biogas recirculation. Dosage in the headspace resulted in a more stable operation. The result of the hydrogen sulphide oxidation was mostly elemental sulphur, partially accumulated in the headspace of the digester, where different sulphide-oxidising bacteria were found.  相似文献   

8.
《Ecological Engineering》2005,24(3):175-183
An integrated pig-biogas-vegetable greenhouse system (PBVGS) was designed and studied in Laiwu, Shandong Province of North China from 2001 to 2002, where 20 groups of PBVGS and their corresponding controls were investigated. The PBVGS involves building a pigsty and a biogas digester in a vegetable greenhouse, putting pig dung into the biogas digester for fermentation, using the biogas for increasing illumination and air temperature in the greenhouse, and using the fermented waste as organic manure. The data indicate that the pig growth, biogas production and vegetable production were effectively improved in PBVGS, and that ecological, economic and social benefits were simultaneously achieved. The average annual net income of a standard PBVGS was 10,900 RMB, with an increase of 58.0% over its traditional non-integrated parts. It could use up 14,000 kg fresh pig dung and produce 10,000 kg organic manure one year for the improvement of soil fertility. The daily net weight increase for a pig in PBVGS averaged 0.82 kg, 227.6% higher than its controls. The average yield per hectare of cucumbers and tomatoes, increased by 18.4 and 17.8% over their controls, respectively. In addition, the biogas produced in the digester increased by 32.4% annually. Based on biogas fermentation, the PBVGS provides a fine ecological cycle from livestock feeding to vegetable production, resulting in a higher conversion efficiency in nutrient cycle and energy flow.  相似文献   

9.
Anaerobic digestion of animal waste: waste strength versus impact of mixing   总被引:6,自引:0,他引:6  
We studied the effect of mode of mixing (biogas recirculation, impeller mixing, and slurry recirculation) and waste strength on the performance of laboratory scale digesters. The digesters were fed with 5% and 10% manure slurry, at a constant energy supply per unit volume (8 W/m3). The experiments were conducted in eight laboratory scale digesters, each having a working volume of 3.73 L, at a controlled temperature of 35+/-2 degrees C. Hydraulic retention time (HRT) was kept constant at 16.2 days, resulting in a total solids (TS) loading rate of 3.08 g/Ld and 6.2 g/Ld for 5% and 10% manure slurry feeds, respectively. Results showed that the unmixed and mixed digesters performed quite similarly when fed with 5% manure slurry and produced biogas at a rate of 0.84-0.94 L/Ld with a methane yield of 0.26-0.31 L CH4/g volatile solids (VS) loaded. This was possibly because of the low solids concentration in the case of 5% manure slurry, where mixing created by the naturally produced gas might be sufficient to provide adequate mixing. However, the effect of mixing and the mode of mixing became prominent in the case of the digesters fed with thicker manure slurry (10%). Digesters fed with 10% manure slurry and mixed by slurry recirculation, impeller, and biogas recirculation produced approximately 29%, 22% and 15% more biogas than unmixed digester, respectively. Deposition of solids inside the digesters was not observed in the case of 5% manure slurry, but it became significant in the case of 10% manure slurry. Therefore, mixing issue becomes more critical with thicker manure slurry.  相似文献   

10.
Different feeding approaches were applied to a 5 l anaerobic digester in order to improve the biogas production. During operation, the reactor was fed with a mixture (9.7% w/v total solids (TS) and 7.6% w/v volatile solids (VS) in average) of pig manure with fish oil waste and waste from bentonite of edible oil filtration process, at different intervals of 24, 12 and 4 h at 15 days of hydraulic retention time. Production and quality of the biogas were practically constant at 183.7 ml (average) of biogas per gram of volatile solids available in the reactor per day, and the best biogas composition was 73.6% v/v CH4 and 26.4% v/v CO2.  相似文献   

11.
This study evaluated the feasibility of methane production from fruit and vegetable waste (FVW) obtained from the central food distribution market in Mexico City using an anaerobic digestion (AD) process. Batch systems showed that pH control and nitrogen addition had significant effects on biogas production, methane yield, and volatile solids (VS) removal from the FVW (0.42 m(biogas)(3)/kg VS, 50%, and 80%, respectively). Co-digestion of the FVW with meat residues (MR) enhanced the process performance and was also evaluated in a 30 L AD system. When the system reached stable operation, its methane yield was 0.25 (m(3)/kg TS), and the removal of the organic matter measured as the total chemical demand (tCOD) was 65%. The microbial population (general Bacteria and Archaea) in the 30 L system was also determined and characterized and was closely correlated with its potential function in the AD system.  相似文献   

12.
Studies on the performance of a laboratory scale upflow anaerobic solids removal (UASR) digester were carried out using sand-laden cow manure slurries having total solids (TS) concentration as 50 and 100 g/l. Hydraulic retention time (HRT) was maintained as 32.4 days, which resulted in the volatile solids (VS) loading rates of 1 and 1.64 g/l d. The UASR system was designed to remove sand from the manure slurry, while anaerobically digesting biodegradable solids inside a single reactor. To enhance the contact of microorganisms and substrate, the liquor from the top of the digester was recirculated through the bed of settled solids at its bottom. Volatile solids reduction through this process was observed to be 62% and 68% in the case of feed slurries having TS concentration as 50 and 100 g/l (referred in the text as 5% and 10% feed slurries), respectively. The methane production rates were observed to be 0.22 and 0.38 l/l d, while methane yield was 0.21 and 0.27 l CH4/g VS loaded, for 5% and 10% feed slurries, respectively. This indicates that the increase in the VS loading had a positive impact on methane production rate and methane yield. It would be of interest to study the performance of a UASR digester at higher solids loadings and with longer solids retention times. Nonetheless, the presented study showed that sand-laden manure slurries can be successfully digested in a UASR digester producing methane energy equivalent to 4 kW h per m3 of digester volume per day.  相似文献   

13.
The aim of the study was to investigate the long‐term fermentation of an extremely sour substrate without any addition of manure. In the future, the limitation of manure and therefore the anaerobic digestion of silage with a very low buffering capacity will be an increasing general bottleneck for energy production from renewable biomass. During the mesophilic anaerobic digestion of sugar beet silage (without top and leaves) as the sole substrate (without any addition of manure), which had an extreme low pH of around 3.3, the highest specific gas production rate (spec. GPR) of 0.72 L/g volatile solids (VS) d was achieved at a hydraulic retention time (HRT) of 25 days compared to an organic loading rate (OLR) of 3.97 g VS/L d at a pH of around 6.80. The methane (CH4) content of the digester ranged between 58 and 67 %, with an average of 63 %. The use of a new charge of substrate (a new harvest of the same substrate) with higher phosphate content improved the performance of the biogas digester significantly. The change of the substrate charge also seemed to affect the methanogenic population dynamics positively, thus improving the reactor performance. Using a new substrate charge, a further decrease in the HRT from 25 to 15 days did not influence the digester performance and did not seem to affect the structure of the methanogenic population significantly. However, a decrease in the HRT affected the size of the methanogenic population adversely. The lower spec. GPR of 0.54 L/g VS d attained on day 15 of the HRT could be attributed to a lower size of methanogenic population present in the anaerobic digester during this stage of the process. Furthermore, since sugar beet silage is a relatively poor substrate, in terms of the buffering capacity and the availability of nutrients, an external supply of buffering agents and nutrients is a prerequisite for a safe and stable digester operation.  相似文献   

14.
In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.  相似文献   

15.
The influence of compost as inoculum during continuous anaerobic digestion of fodder beet silage was studied over 330 days. Two simultaneously driven mesophilic fermentors (Inoc-1/Inoc-2) were inoculated with manure and sewage sludge. Only the digester Inoc-2 was inoculated additionally with compost. After 160 days fermentor Inoc-2 reached a hydraulic retention time (HRT) around 15 days whereas Inoc-1 remained at a HRT of 40d. After changing the substrate feed from one to three times a day both digesters stabilised at a shorter HRT; Inoc-2 at 10 days and Inoc-1 around 20 days. An additional inoculation of fermentor Inoc-1 by compost shortened the HRT to 10 days and revealed a minor increased gas production of about 6%. Fluorescence in situ hybridization indicated that probably an archaeal population shift was responsible for the observed stimulations. An addition of compost induced a methanogenic community change towards hydrogenotrophic methanogens.  相似文献   

16.
实验室模拟高负荷SPAC厌氧反应器运行   总被引:6,自引:1,他引:5  
采用模拟废水, 对新型高负荷螺旋式自循环(Spiral automatic circulation, SPAC)厌氧反应器的运行性能进行了实验室模拟研究。结果表明: 在30oC, 水力停留时间(HRT)为12 h, 进水COD浓度从8000 mg/L升至20 000 mg/L的条件下, 反应器的COD去除率为91.1%~95.7%, 平均去除率为93.6%。在进水浓度为20 000 mg/L, HRT由5.95 h缩短至1.57 h的工况下, COD去除率从96.0%降低至78.7%, 反应器达到最高容积负荷率306 g COD/(L·d), 最大容积COD去除率240 g/(L·d), 最高容积产气率131 L/(L·d)。该反应器对基质浓度的连续提升具有良好的适应能力。进水COD浓度由8000 mg/L提升至20 000 mg/L时, 出水COD浓度一直处在较低水平(平均为852?mg/L), 容积COD去除率和容积产气率分别提高162%和119%。该反应器对HRT的连续缩短也有良好的适应能力。HRT由5.95 h缩短至1.57 h时,反应器容积COD去除率和容积产气率分别升高191%和195%。  相似文献   

17.
The concepts of feed pretreatment, phase separation, and whole-cell immobilization technology have been incorporated in this investigation for the development of rational and cost-effective two- and three-stage methane recovery systems from water hyacinth (WH)Analyses of laboratory data reveal that a three-stage system could be designed with an alkali pretreatment stage [3.6% Na(2)CO(3) + 2.5% Ca(OH)(2) W/W, 24 h HRT] followed by an open acid reactor (2.1 days HRT) and closed immobilized methane reactor (12 h HRT), providing steady-state COD conversion of 62-65%, TVA conversion of 91-95%, and gas productivity of 4.08-5.36 L/L reactor volume/day with 82% methane. A gas yield of 50 L/kg WH/day (dry wt basis) at 35-37 degrees C is possible with this system. Insulation bricks, with particle size distribution of 500-3000 mum, were used as support material in the reactors at organic loading rate of 20 kg COD/m(3) day. The reactors matured in 15-18 weeksSubstantial reduction in retention time for the conversion of volatile acids in immobilized methane reactors prompted further research on the combined immobilized reactor to make possible an additional reduction in the cost of a WH-based biogas system. Evaluation of laboratory data reveals that a two-stage system could be designed with an open alkali pretreatment stage and a combined immobilized reactor (12 h HRT), providing steady-state COD conversion of 53% and gas productivity of 3.1 L/L reactor volume/day with 86% methane. A gas yield of 44 L/kg WH/day (dry wt basis) at 35-37 degrees C could be obtained from this system. Insulation bricks, with 500-1000 mum particle size distribution, was used as support material at an organic loading rate of 15 kg COD/m(3) day. Notwithstanding the fact that the technology in this study has been developed with water hyacinth as substrate, the implicit principles could be extended to any other organic substrate.  相似文献   

18.
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne−1 VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne−1. This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed.  相似文献   

19.
Methanosarcina barkeri DSM-804, a methanogenic bacterium, when exposed to microwave radiation of frequencies ranging from 13.5 to 36.5 GHz, showed faster growth in comparison to the unirradiated bacterial culture. Methane concentration in the biogas generated from the irradiated culture was higher than that from unirradiated one, which was to 76.3% on the 15th day of incubation at a microwave radiation frequency of 31.5 GHz, 10 dbm power when irradiated for 2 h. Microscopic study of pure culture revealed that the cells of M. barkeri were more in number and their cell diameter was enlarged by 20%. Inoculation of the culture in a biogas digester containing a combination of jute waste and vegetable market waste as substrate increased the efficacy of biomethanation and reduced its lag phase significantly.  相似文献   

20.
Studies are presented on new types of anaerobic digesters in which chopped or dry crushed Ipomoea carnea was fed without any other pretreatment, in an attempt to develop commercially viable means of utilizing the otherwise very harmful plant. Two types of solid-feed anaerobic digesters (SFADs) were studied. The first type had a single vessel in which the bottom 35% portion was separated from the top portion by a perforated PVC disk. The weed was charged from the top and inoculated with anaerobically digested cowdung-water slurry. The fermentation of the weed in the reactor led to the formation of volatile fatty acids (VFAs) plus some biogas. The leachate, rich in the VFAs, was passed through the perforated PVC sheet and collected in the lower portion of the vessel. The other type of reactors had two vessels, the first one was fully charged with the weed and the second received the VFA leachate. With both types were attached upflow anaerobic filters (UAFs) which converted the leachate into combustible biogas consisting of approximately 70% methane. All SFADs developed very consistent performance in terms of biogas yield within 17 weeks of start. The two-compartment reactors yielded significantly more biogas than the single-compartment reactors of corresponding total volume, and the reactors with which anaerobic filters (AF) were attached yielded more biogas than the ones without AF. The best performing units generated 2.41m(3) of biogas per m(3) of digester volume, as compared to 0.1-0.2m(3) of biogas, m(-3)d(-1), obtainable with conventional digesters. This indicates the viability of this technology. The spent weed can be vermicomposted directly to obtain good soil-conditioner cum fertilizer; earthworm Eudrilus eugeniae produced 540mg vermicast per animal every day, achieving near total conversion of feed to vermicast in 20 days. The proposed systems, thus, makes it possible to accomplish total utilization of ipomoea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号