首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis.  相似文献   

2.
Molecular chaperones mediate multiple aspects of steroid receptor function, but the physiological importance of most receptor-associated cochaperones has not been determined. To help fill this gap, we targeted for disruption the mouse gene for the 52-kDa FK506 binding protein, FKBP52, a 90-kDa heat shock protein (Hsp90)-binding immunophilin found in steroid receptor complexes. A mouse line lacking FKBP52 (52KO) was generated and characterized. Male 52KO mice have several defects in reproductive tissues consistent with androgen insensitivity; among these defects are ambiguous external genitalia and dysgenic prostate. FKBP52 and androgen receptor (AR) are coexpressed in prostate epithelial cells of wild-type mice. However, FKBP52 and AR are similarly coexpressed in testis even though testis morphology and spermatogenesis in 52KO males are usually normal. Molecular studies confirm that FKBP52 is a component of AR complexes, and cellular studies in yeast and human cell models demonstrate that FKBP52 can enhance AR-mediated transactivation. AR enhancement requires FKBP52 peptidylprolyl isomerase activity as well as Hsp90-binding ability, and enhancement probably relates to an affect of FKBP52 on AR-folding pathways. In the presence of FKBP52, but not other cochaperones, the function of a minimally active AR point mutant can be dramatically restored. We conclude that FKBP52 is an AR folding factor that has critically important physiological roles in some male reproductive tissues.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Hsp90 is required for the normal activity of steroid receptors, and in steroid receptor complexes it is typically bound to one of the immunophilin-related co-chaperones: the peptidylprolyl isomerases FKBP51, FKBP52 or CyP40, or the protein phosphatase PP5. The physiological roles of the immunophilins in regulating steroid receptor function have not been well defined, and so we examined in vivo the influences of immunophilins on hormone-dependent gene activation in the Saccharomyces cerevisiae model for glucocorticoid receptor (GR) function. FKBP52 selectively potentiates hormone-dependent reporter gene activation by as much as 20-fold at limiting hormone concentrations, and this potentiation is readily blocked by co-expression of the closely related FKBP51. The mechanism for potentiation is an increase in GR hormone-binding affinity that requires both the Hsp90-binding ability and the prolyl isomerase activity of FKBP52.  相似文献   

11.
12.
13.
Androgens play important roles in the growth of normal prostate and prostate cancer via binding to the androgen receptor (AR). In addition to androgens, AR activity can also be modulated by selective growth factors and/or kinases. Here we report a new kinase signaling pathway by showing that AR transactivation was repressed by wild type glycogen synthase kinase 3beta (GSK3 beta) or constitutively active S9A-GSK3 beta in a dose-dependent manner. In contrast, the catalytically inactive kinase mutant GSK3 beta showed little effect on the AR transactivation. The suppression of AR transactivation by GSK3 beta was abolished by the GSK3 beta inhibitor lithium chloride. The in vitro kinase assay showed that GSK3 beta prefers to phosphorylate the amino terminus of AR that may lead to the suppression of activation function 1 activity located in the NH(2)-terminal region of AR. GSK3 beta interrupted the interaction between the NH(2) and COOH termini of AR, and overexpression of the constitutively active form of GSK3 beta, S9A-GSK3 beta, reduced the androgen-induced prostate cancer cell growth in stably transfected CWR22R cells. Together, our data demonstrated that GSK3 beta may function as a repressor to suppress AR-mediated transactivation and cell growth, which may provide a new strategy to modulate the AR-mediated prostate cancer growth.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号