首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abbott CL  Double MC 《Molecular ecology》2003,12(10):2747-2758
The evolutionary relationship between shy (Thalassarche cauta) and white-capped (T. steadi) albatrosses was examined using mitochondrial control region sequences. Results were interpreted in the context of a recent and contentious taxonomic revision that recommended full species status for shy and white-capped albatrosses. Low sequence divergence between shy and white-capped albatrosses (1.8%) and between their close relatives, Salvin's and Chatham albatrosses (2.9%), was observed. Much higher sequence divergence was found between the shy/white-capped pair and the Salvin's/Chatham pair (7.0%). Phylogenetic analyses confirmed the separation of the shy/white-capped pair from the Salvin's/Chatham pair but did not provide species-level resolution. Phylogeographic analyses, including a nested clade analysis, FST estimates and an analysis of molecular variance, indicated unambiguous genetic structuring between shy and white-capped albatrosses, thus confirming the demographic isolation of the species, but showed little to no structuring within each species. The geographical distribution of mtDNA haplotypes and other evidence suggest that shy albatrosses arose through range expansion by white-capped albatrosses.  相似文献   

2.
Shy and white-capped albatrosses, Thalassarche cauta and T. steadi, respectively, are phenotypically similar and are known to suffer fisheries-related bycatch mortality across their foraging range. Assessments of the extent or scale of impact of bycatch mortality on these species have previously been precluded by difficulties identifying bycatch carcasses to species level. In this study, a fast and simple molecular test based on a single nucleotide polymorphism in mtDNA of shy and white-capped albatrosses was used to determine the species composition of fisheries bycatch carcasses recovered from Australian, New Zealand, and South African waters. The only area where bycatch mortality of both species co-occurred was in Tasmanian waters; in all other zones the bycatch was exclusively comprised of white-capped albatrosses. Genotypic provenance assignment tests of shy albatrosses, a species with significant genetic structure between island colonies, correctly assigned 72% to their island of origin. These data are the first to provide insight into the relative vulnerability of shy and white-capped albatrosses to bycatch mortality across their foraging range, and to establish the vast differences in the at-sea distributions of these two species.  相似文献   

3.
Cadmium and mercury concentrations were measured in the tissues of 64 individual albatrosses [23 wandering albatrosses (Diomedea exulans), 9 royal albatrosses (Diomedea epomophora) and 32 shy albatrosses (Thalassarche cauta)] which were killed as by-catch in longline fishing activities between 1991 and 1994. Mercury concentrations were also determined for 33 shy albatross eggs (excluding shells). The birds were all sexed and assigned to one of two age classes (immature and adult). The three species exhibited differences both in overall concentrations of cadmium and mercury, and also in the pattern of accumulation of metals with age and sex. Wandering albatrosses exhibited the highest mercury concentrations with a mean concentration in adult liver samples of 920.0 ± 794.1 μg g−1 dry weight. Shy albatrosses had the lowest mercury concentrations with mean concentrations in adult livers of 36.3 ± 21.4 mg g−1 dry weight. The highest mercury concentration was 1800 μg g−1 for an adult female wandering albatross. Cadmium concentrations were less variable, with adult royal albatrosses having the highest average concentrations (180.0 ± 165.0 in adult kidneys) and adult shy albatrosses the lowest (40.1 ± 20.0 in adult kidney). The highest individual cadmium concentration was 287 μg g−1 for a juvenile wandering albatross. There was no evidence of increased accumulation of cadmium with age in any of the species, but wandering albatrosses showed higher mercury concentrations in adults than juveniles. Female wandering albatrosses also had significantly higher mercury concentrations than males. The mercury contents of the shy albatross eggs were very low, with a maximum concentration of 5.4 μg g−1. The results of this study are consistent with the findings of previous work on albatrosses and support the notion that the life-history strategy of these species (i.e. long-lived with low reproductive output) may be an important determinant in the concentrations of some metals found in their tissues. Accepted: 15 February 1999  相似文献   

4.
Surviving with low genetic diversity: the case of albatrosses   总被引:1,自引:0,他引:1  
Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84 Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival.  相似文献   

5.
The philopatric behaviour of albatrosses has intrigued biologists due to the high mobility of these seabirds. It is unknown how albatrosses maintain a system of fragmented populations without frequent dispersal movements, in spite of the long-term temporal heterogeneity in resource distribution at sea. We used both genetic (amplified fragment length polymorphism) and capture-mark-recapture (CMR) data to identify explicitly which among several models of population dynamics best applies to the wandering albatross (Diomedea exulans) and to test for migration-drift equilibrium. We previously documented an extremely low genetic diversity in this species. Here, we show that populations exhibit little genetic differentiation across the species' range (Theta(B) < 0.05, where Theta(B) is an F(ST) analogue). Furthermore, there was no evidence of hierarchical structure or isolation-by-distance. Wright's F(ST) between pairs of colonies were low in general and the pattern was consistent with a nonequilibrium genetic model. In contrast, CMR data collected over the last decades indicated that about one bird per cohort has dispersed among islands. Overall, F(ST) values were not indicative of contemporary dispersal as inferred from CMR data. Moreover, all genotypes grouped together in a cluster analysis, indicating that current colonies may have derived from one ancestral source that had a low genetic diversity. A metapopulation dynamics model including a recent (postglacial) colonization of several islands seems consistent with both the very low levels of genetic diversity and structure within the wandering albatross. Yet, our data suggest that several other factors including ongoing gene flow, recurrent long-distance dispersal and source-sink dynamics have contributed to different extent in shaping the genetic signature observed in this species. Our results show that an absence of genetic structuring may in itself reveal little about the true population dynamics in seabirds, but can provide insights into important processes when a comparison with other information, such as demographic data, is possible.  相似文献   

6.
Habitat selection in heterogeneous environments is assumed to allow diversification. Wide‐ranging species like pelagic seabirds present a paradox, in that their diversity appears difficult to reconcile with a frequent lack of geographical isolation between populations. We studied the foraging strategies of three closely related species of greater albatrosses, wandering albatross, Diomedea exulans, Amsterdam albatrosses D. amsterdamensis and royal albatross, D. epomophora, in relation to environmental heterogeneity at coarse‐grained and fine‐grained scales. During the incubation period the three species foraged at long distances from their colonies. We observed significant differences between the species in the duration of foraging trips and the distance travelled per day. There were significant differences in preference for habitat types in relation to bathymetric features, and in chlorophyll a concentrations in the waters traversed. Royal albatross preferred shallower waters (<1500 m depth), which were rich in chlorophyll (>0.5 mg/m3), while the other species spent on average 80% of their time in waters deeper than this, where chlorophyll levels were lower. Wandering albatrosses foraged in colder waters than Amsterdam albatrosses. Patterns of activity divided the species into two groups: those exploiting oceanic habitats (wandering and Amsterdam albatrosses) spent high proportions of time on the water (49%), and had on average 1.35 takeoffs and landings per hour, while royal albatross, which foraged mainly over neritic waters spent only 35% of their time sitting on the water, and made on average 2.6 takeoff per hour. Further, royal albatross showed a similar pattern of activity during all periods of the day, while wandering and Amsterdam albatrosses were mostly inactive during the night. We link these differences in activity to prey patch availability in two contrasting habitats – continental shelf areas compared to open ocean habitats. The divergent styles of foraging observed in this study suggest that these closely‐related and wide‐ranging species could effectively co‐exist by dividing the resources available to them by different modes of exploitation.  相似文献   

7.
Wandering albatrosses have been subjected to numerous taxonomic revisions due to discoveries of new species, analyses of morphological data and, more recently, the inclusion of genetic data. The small population of albatrosses (170 individuals including 26 pairs breeding annually) on Amsterdam Island in the Indian Ocean, Diomedea amsterdamensis, has been given species status based on plumage and morphometrics, but genetic data published to date provide weak support and its specific status remains controversial for some authors. We used mitochondrial control region sequence data to elucidate the relationship of the Amsterdam albatross within the wandering albatross complex (Diomedea amsterdamensis, D. antipodensis, D. dabbenena and D. exulans). Three novel haplotypes were present in 35 individuals from Amsterdam Island, and were highly divergent (3.6–7.3%) from haplotypes found in the other three members of the wandering albatross complex. Low levels of genetic variation in Amsterdam albatross likely resulted, at least in part, from a population bottleneck. Geographic isolation in the wandering albatross complex is maintained by high natal philopatry. As Amsterdam Island is the only breeding ground for this critically endangered species, we strongly urge conservation efforts in the area, especially in relation to long line fisheries and other threats such as disease and introduced predators, and it be listed as a distinct species.  相似文献   

8.
Calcrete aquifers from the Yilgarn region of arid central Western Australia contain an assemblage of obligate groundwater invertebrate species that are each endemic to single aquifers. Fine-scale phylogeographic and population genetic analyses of three sympatric and independently derived species of amphipod (Chiltoniidae) were carried out to determine whether there were common patterns of population genetic structure or evidence for past geographic isolation of populations within a single calcrete aquifer. Genetic diversity in amphipod mitochondrial DNA (cytochrome c oxidase subunit I gene) and allozymes were examined across a 3.5 km2 region of the Sturt Meadows calcrete, which contains a grid of 115 bore holes (=wells). Stygobiont amphipods were found to have high levels of mitochondrial haplotype diversity coupled with low nucleotide diversity. Mitochondrial phylogeographic structuring was found between haplogroups for one of the chiltoniid species, which also showed population structuring for nuclear markers. Signatures of population expansion in two of the three species, match previous findings for diving beetles at the same site, indicating that the system is dynamic. We propose isolation of populations in refugia within the calcrete, followed by expansion events, as the most likely source of intraspecific genetic diversity, due to changes in water level influencing gene flow across the calcrete.  相似文献   

9.
Gonadal size and the circulating concentrations of two pituitary hormones (luteinizing hormone and prolactin) and three gonadal steroids (testosterone, progesterone and oestradiol-17β) were measured in two closely related Diomedea albatrosses at South Georgia. The Grey-headed albatross D. chrysostoma , if successful in rearing a chick, usually breeds biennially, whilst the Black-browed albatross D. melanophris normally breeds annually. Direct examination (by laparoscopy) of the gonads showed that the testes of both species underwent annual cycles, whilst endocrine data confirmed that those male Grey-headed albatrosses at the colony in the pre-laying period but not breeding in that year (having bred successfully the previous year) were apparently in full reproductive condition with elevated testosterone levels typical of breeding birds. However, the females of the two species differed markedly. Grey-headed albatrosses, in a year following successful breeding, had undeveloped ovaries with low levels of circulating oestradiol but high levels of progesterone, whereas the Black-browed albatrosses showed a pattern consistent with annual ovarian development. The profiles of gonadal steroids through the breeding season were similar for the males of both species but differences existed between the females. In the female Grey-headed albatrosses, transient peaks of progesterone were present throughout chick rearing but these were absent from Black-browed albatrosses. Prolactin had a similar profile in both species, with uniformly high levels throughout incubation and a rapid fall near the end of the brood-guard period. It is suggested that Grey-headed, like Black-browed, albatrosses are intrinsically annual breeders. However, if a female Grey-headed albatross breeds successfully in one year, then nutritional factors operate to ensure that in the following year the female does not show ovarian development, although the ovary is active in terms of progesterone secretion.  相似文献   

10.

The two species of yellow-nosed albatross, Atlantic (Thalassarche chlororhynchos) and Indian (T. carteri), are morphologically similar, but they differ in breeding behaviour and distribution. Both species are listed as endangered by the IUCN due to the limited number of breeding sites, threats from introduced predators and diseases, and impact of commercial fishing. We quantified genetic variation between and within the two species. Using nuclear (microsatellites and two nuclear sequences) and mitochondrial (control region) markers, we analysed 354 samples from four breeding islands (Atlantic: Nightingale, Inaccessible, and Gough; Indian: Amsterdam) and bycatch samples from South Africa and New Zealand. In addition to all markers separating the two species, nuclear markers showed Atlantic yellow-nosed albatrosses from Gough Island are genetically distinct from those breeding at Nightingale and Inaccessible Islands in the Tristan da Cunha archipelago. Nuclear markers confirmed that all bycatch samples were Indian yellow-nosed albatrosses, however, the bycatch birds from South Africa and New Zealand were distinct from each other and from birds breeding on Amsterdam Island, suggesting colony specific dispersal at sea. Our study supports the current recognition of two yellow-nosed albatross species and recognises genetically distinct groups of both Atlantic and Indian yellow-nosed albatross breeding on different islands, which is important for their conservation and management.

  相似文献   

11.
Given the rarity of hybridization in seabirds, which presumably relates to their very high philopatry, the degree of breeding‐site vagrancy should correspond with the incidence of mixed‐species pairing, although not necessarily with the production of hybrids if there are behavioural or genetic barriers to successful reproduction. Using molecular methods, we verified that two of the three chicks hatched by a vagrant male White‐capped Albatross Thalassarche steadi paired with a female Black‐browed Albatross Thalassarche melanophris at South Georgia were genuine hybrids (these chicks died before fledging, but a third chick – the result of an extra‐pair copulation – fledged successfully). In a wider review, we could find only five known or suspected mixed‐species pairs, and three different hybrids in albatrosses, mostly between closely related species. This appears to reflect behavioural barriers to hybridization in sympatric species and the low incidence of breeding‐site vagrancy (which mainly involves single individuals that invariably associate with the most phenotypically similar local taxon). Breeding‐site vagrancy is most frequent in the ‘shy‐albatross’ complex, which could explain why genetic divergence occurred more recently in this group than in other Thalassarche, and hence exploratory behaviour appears to be more important than numerical abundance or breeding distribution in driving colonization as well as hybridization processes in albatrosses.  相似文献   

12.
Verspoor RL  Haddrill PR 《PloS one》2011,6(10):e26318
Drosophila melanogaster and its close relatives have been extremely important model species in the development of population genetic models that serve to explain patterns of diversity in natural populations, a major goal of evolutionary biology. A detailed picture of the evolutionary history of these species is beginning to emerge, as the relative importance of forces including demographic changes and natural selection is established. A continuing aim is to characterise levels of genetic diversity in a large number of populations of these species, covering a wide geographic area. We have used collections from five previously un-sampled wild populations of D. melanogaster and two of D. simulans, across three continents. We estimated levels of genetic diversity within, and divergence between, these populations, and looked for evidence of genetic structure both between ancestral and derived populations, and amongst derived populations. We also investigated the prevalence of infection with the bacterial endosymbiont Wolbachia. We found that D. melanogaster populations from Sub-Saharan Africa are the most diverse, and that divergence is highest between these and non-Sub-Saharan populations. There is strong evidence for structuring of populations between Sub-Saharan Africa and the rest of the world, and some evidence for weak structure amongst derived populations. Populations from Sub-Saharan Africa also differ in the prevalence of Wolbachia infection, with very low levels of infection compared to populations from the rest of the world.  相似文献   

13.
Ten microsatellite loci were used to investigate the impact of human activity on the spatial and temporal genetic structure of Vitellaria paradoxa (Sapotaceae), a parkland tree species in agroforestry systems in southern Mali. Two stands (forest and fallow) and three cohorts (adults, juveniles and natural regeneration) in each stand were studied to: (i) compare their levels of genetic diversity (gene diversity, HE; allelic richness, Rs; and inbreeding, FIS); (ii) assess their genetic differentiation (FST); and (iii) compare their levels of spatial genetic structuring. Gene diversity parameters did not vary substantially among stands or cohorts, and tests for bottleneck events were nonsignificant. The inbreeding coefficients were not significantly different from zero in most cases (FIS = -0.025 in forest and 0.045 in fallow), suggesting that the species is probably outbreeding. There was a weak decrease in F(IS) with age, suggesting inbreeding depression. Differentiation of stands within each cohort was weak (FST = 0.026, 0.0005, 0.010 for adults, juveniles and regeneration, respectively), suggesting extensive gene flow. Cohorts within each stand were little differentiated (FST = -0.001 and 0.001 in forest and fallow, respectively). The spatial genetic structure was more pronounced in fallow than in forest where adults showed no spatial structuring. In conclusion, despite the huge influence of human activity on the life cycle of Vitellaria paradoxa growing in parkland systems, the impact on the pattern of genetic variation at microsatellite loci appears rather limited, possibly due to the buffering effect of extensive gene flow between unmanaged and managed populations.  相似文献   

14.
Habitat fragmentation represents the single most serious threat to the survival of tropical ecosystems. In formulating strategies to counteract the detrimental effects of fragmentation, knowledge of the levels and patterns of genetic diversity within and between natural populations is vital to the establishment of any conservation programme. We utilized polymorphic chloroplast microsatellite markers to analyse genetic diversity in populations of the endangered tropical tree Caesalpinia echinata Lam. representing the entire extant range of the species. Levels of within-population diversity were low, with only two of seven populations studied displaying any variation. The vast majority of the genetic variation was partitioned between geographical regions (36%) and between populations within regions (55%). These levels of genetic structuring, coupled with a calculated pollen-to-seed flow ratio of approximately 6.7:1, suggest that there has been little gene flow between the three major geographical regions over an extended period. Thus, the current tripartite distribution of the species is more consistent with the existence of separate glacial refugia, rather than reflecting any anthropogenic effects.  相似文献   

15.
Effective population size, levels of genetic diversity, gene flow, and genetic structuring were assessed in 205 colonial Roseate spoonbills from 11 breeding colonies from north, central west, and south Brazil. Colonies and regions exhibited similar moderate levels of diversity at five microsatellite loci (mean expected heterozygosity range 0.50–0.62; allelic richness range 3.17–3.21). The central west region had the highest Ne (59). F ST values revealed low but significant genetic structuring among colonies within the north and within the south regions. Significant global genetic structuring was found between the northern and central western populations as well as between the northern and southern populations. An individual-based Bayesian clustering method inferred three population clusters. Assignment tests correctly allocated up to 64% of individuals to their source regions. Collectively, results revealed complex demographic dynamics, with ongoing gene flow on a local scale, but genetic differentiation on a broader scale. Populations in the three regions may all be conserved, but special concern should be given to central western ones, which can significantly contribute to the species’ gene pool in Brazil.  相似文献   

16.
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.  相似文献   

17.
Burg TM  Croxall JP 《Molecular ecology》2004,13(8):2345-2355
A recent taxonomic revision of wandering albatross elevated each of the four subspecies to species. We used mitochondrial DNA and nine microsatellite markers to study the phylogenetic relationships of three species (Diomedea antipodensis, D. exulans and D. gibsoni) in the wandering albatross complex. A small number of samples from a fourth species, D. dabbenena, were analysed using mitochondrial DNA only. Mitochondrial DNA sequence analyses indicated the presence of three distinct groups within the wandering albatross complex: D. exulans, D. dabbenena and D. antipodensis/D. gibsoni. Although no fixed differences were found between D. antipodensis and D. gibsoni, a significant difference in the frequency of a single restriction site was detected using random fragment length polymorphism. Microsatellite analyses using nine variable loci, showed that D. exulans, D. antipodensis and D. gibsoni were genetically differentiated. Despite the widespread distribution of D. exulans, we did not detect any genetic differentiation among populations breeding on different island groups. The lower level of genetic differentiation between D. antipodensis and D. gibsoni should be reclassified as D. antipodensis. Within the context of the current taxonomy, these combined data support three species: D. dabbenena, D. exulans and D. antipodensis.  相似文献   

18.
Theory predicts that genetic variation is a determinant of persistence, and that the abundance and distribution of variation is strongly dependent on genetic drift and gene flow. Small, isolated populations are expected to be less diverse and more differentiated than large, inter-connected populations. Thus rare species may be more at risk of extinction. We used 389 putative AFLP loci to compare genetic variation and structuring in two pairs of closely-related common (large populations geographically widespread) and rare (small populations spatially restricted) Persoonia species. We genotyped 15–22 adult plants, from four populations, covering the geographic range of each species. Although genetic diversity was low for all four species (for long-lived outcrossing perennials), we found significantly more diversity within populations of the rare species than within those of the common species. AMOVA revealed significant levels of structure both among species (21%) and populations (15%). The proportion of inter-population variation within species did not vary consistently with rarity (Pair 1 rare 21.1% versus common 16.5%; Pair 2 rare 15.8% versus common 20.6%). However populations of the rare species were more differentiated than common species with similar geographic separation, suggesting greater gene flow between populations of the common species. Therefore, even relatively small genetically isolated populations of rare Persoonia species were more diverse than large populations of common Persoonia species. We hypothesise that common Persoonia species have undergone a rapid range expansion from a narrow gene pool, while genetic diversity is maintained in the soil seed-bank of rare remnants.  相似文献   

19.
Genetic diversity was measured by allozyme electrophoresis in eight natural populations of the threatened Canarian endemic Viola palmensis Webb & Berth. (Violaceae). Nineteen alleles corresponding to 11 gene loci were detected. High levels of genetic diversity were found, ranging from 36.3 to 45.4 % for the percentage of polymorphic loci (P), from 1.45 to 1.60 for the average number of alleles per locus (A) and from 0.128 to 0.200 for the expected heterozygosity (H(e)). Between 85.5 and 96.6 % of genetic variability was apportioned within populations. As a whole, populations were not at Hardy-Weinberg equilibrium, with a deficit of heterozygous individuals attributable to the existence of genetic structuring in the populations analysed. The levels of interpopulation genetic differentiation were low (mean F(ST) = 0.100), while genetic identity pair-wise comparisons were high (mean I = 0.973) suggesting considerable levels of gene flow among populations. No relationship was detected between genetic differentiation and geographical distances between populations. An outcrossing insect-mediated breeding system might contribute to pollen dispersion of this species. For conservation genetics we suggest in situ preservation areas are defined that are free of disturbance and that include populations with the highest genetic diversity.  相似文献   

20.
Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and potentially predicting future distributional limits of albatrosses globally, particularly with respect to climate change effects on basin-scale and regional wind fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号