首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
324 alleles of the beta-globin gene from unrelated thalassaemia patients native to the eastern region of India (mainly from the state of West Bengal) were analysed for beta-globin gene mutations by the amplification refractory mutation system (ARMS). The major mutations that were detected are IVS-1 pos 5 (G-C), codon 26 (G-A) and codon 30 (G-C) with frequencies of 0.45, 0.33 and 0.05, respectively. Haplotype analysis revealed a very strong linkage disequilibrium of IVS-1 pos 5 (G-C) with one particular haplotype. HbE was found to be associated with two major haplotypes. Codon 30 (G-C) was associated with a haplotype that is the same as that found in the African population. Haplotype associated with codon 8/9 (+G) was the same as that found in northwest India. These findings have implications for the use of molecular diagnosis for genetic counselling and prenatal diagnosis of beta-thalassaemia in this region.  相似文献   

2.
We have characterized the mutations in 1050 carriers of the β-thalassemia gene and analyzed their regional distribution in India. The majority of β-thalassemia carriers were migrants from Pakistan and their pattern of mutations differed from the rest. The frequency of the 619-bp deletion was 33.3% among the migrants from Pakistan, 8–17% in the northern states, and less than 5% in the other states. Among non-migrant subjects, the predominant mutation was IVS-I-5 (G→C), varying from 85% in the southern states and 66–70% in the eastern states to 47–60% in the northern states. The mutation IVS-I-1 (G→T) was observed at high frequency among the migrants from Pakistan (26.2%), but with very low/ zero frequency in the other states. Mutations at codons 8/9 (+G) and codons 41/42 (–CTTT) were distributed in all regions of India with a frequency varying from 3% to 15%. Only eight of 12 published rare mutations were observed in subjects from different parts of India. Mutations of codon 5 (–CT) and codons 47/48 (+ATCT) were found exclusively in migrants from Pakistan, and mutation –88 (C→T) was detected only in subjects from Punjab, Haryana, and Uttar Pradesh. Using the amplification refractory mutation system technique, mutations were successfully identified in 98.2% of subjects. Overall, 91.8% of the subjects had one of the five commonest mutations [IVS-I-5 (G→C), 34.1%; 619-bp deletion, 21.0%; IVS-I-1 (G→T) 15.8%; codons 8/9 (+G), 12.1%, and codons 41/42 (–CTTT), 8.7%], 5.9% of the subjects had a less common mutation, while 1.8% of the carriers remained uncharacterized. The application of this knowledge has helped to successfully establish a program of genetic counselling and prenatal diagnosis of β-thalassemia in order to reduce the burden of this disease in India. Received: 15 October 1996 / Accepted: 18 February 1997  相似文献   

3.
Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.  相似文献   

4.
Length variation in the human mtDNA intergenic region between the cytochrome oxidase II (COII) and tRNA lysine (tRNAlys) genes has been widely studied in world populations. Specifically, Austronesian populations of the Pacific and Austro-Asiatic populations of southeast Asia most frequently carry the 9-bp deletion in that region implying their shared common ancestry in haplogroup B. Furthermore, multiple independent origins of the 9-bp deletion at the background of other mtDNA haplogroups has been shown in populations of Africa, Europe, Australia, and India. We have analyzed 3293 Indian individuals belonging to 58 populations, representing different caste, tribal, and religious groups, for the length variation in the 9-bp motif. The 9-bp deletion (one copy) and insertion (three copies) alleles were observed in 2.51% (2.15% deletion and 0.36% insertion) of the individuals. The maximum frequency of the deletion (45.8%) was observed in the Nicobarese in association with the haplogroup B5a D-loop motif that is common throughout southeast Asia. The low polymorphism in the D-loop sequence of the Nicobarese B5a samples suggests their recent origin and a founder effect, probably involving migration from southeast Asia. Interestingly, none of the 302 (except one Munda sample, which has 9-bp insertion) from Mundari-speaking Austro-Asiatic populations from the Indian mainland showed the length polymorphism of the 9-bp motif, pointing either to their independent origin from the Mon-Khmeric-speaking Nicobarese or to an extensive admixture with neighboring Indo-European-speaking populations. Consistent with previous reports, the Indo-European and Dravidic populations of India showed low frequency of the 9-bp deletion/insertion. More than 18 independent origins of the deletion or insertion mutation could be inferred in the phylogenetic analysis of the D-loop sequences.  相似文献   

5.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNA(Lys) region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.  相似文献   

6.
A 9-base-pair (bp) deletion located between the lysine tRNA (MTTK) and COII (MTCOX*2) genes in the human mitochondrial genome is a valuable marker for tracing population relationships. Previous research has shown that the 9-bp deletion is associated with two major clusters of control region sequences; one occurs in sub-Saharan Africa, while the other is associated with Asian populations and populations of Asian origin. We surveyed 898 individuals from 16 tribal populations in India and found 6 individuals with the 9-bp deletion. Sequences of the first hypervariable segment (HV1) of the mtDNA control region from these 9-bp deletion-bearing mtDNAs were compared to those previously reported from Asian and African populations. Phylogenetic analysis indicates three distinct clusters of tribal Indian 9-bp deletion mtDNA types. One cluster, found in northeast India, includes southeast Asian and Indonesian mtDNA types. The remaining two clusters appear to have unique origins in southern India. These data provide further evidence of past migrations from Asia into the northeast corner of the Indian subcontinent.  相似文献   

7.
The 4-bp deletion (-CTTT) at codon 41/42 (CD41/42) of the human beta-globin gene represents one of the most common beta-thalassemia mutations in East Asia and Southeast Asia, which is historically afflicted with endemic malaria, thus hypothetically evolving under natural selection by malaria infection. To understand the evolutionary process of generating the beta(CD41/42) allele and its maintenance, including the effect of natural selection on the pattern of linkage disequilibrium (LD), we sequenced a 15.933-kb region spanning 20.693 kb of the beta-globin cluster surrounding the 4-bp deletion using a sample from a Chinese population consisting of 24 normal individuals and 16 heterozygotes for the deletion. Forty-nine polymorphic sites were found. Analysis of the data, using a variety of methods including formal population genetics analysis and visual approaches, suggests that the spread of the CD41/42 (-CTTT) deletion is most likely mediated by interallelic gene conversion, although independent deletions in different lineages are also possible. The neutrality test resulted in a significant positive Tajima's D for the beta-globin locus, which is consistent with the existence of balancing selection. This suggests that the 4-bp deletion that occurred at this locus may be an event that is subject to natural selection, due to malaria, which leads to the heterozygote advantage, spread widely with further help by conversion and migration. The evolutionary process of this mutant through gene conversion that could conceivably take place between the 4-bp deletion and the normal sequence in the respective region is discussed in detail.  相似文献   

8.
We have delineated the molecular lesions causing beta-thalassemia in Spain, a country that has witnessed the passage of different Mediterranean populations over the centuries, in order to evaluate the extent of heterogeneity of these mutations and to make possible simplified prenatal diagnosis of the disorder in that country. The use of the polymerase chain-reaction (PCR) technique to preferentially amplify beta-globin DNA sequences that contain the most frequent beta-thalassemia mutations in Mediterraneans enabled us to rapidly analyze 58 beta-thalassemia alleles in a dot-blot format either by hybridization with allele-specific radiolabeled oligonucleotide probes or by direct sequence analysis of the amplification product. The Spanish population carries seven different beta-thalassemia mutations; the nonsense codon 39 is predominant (64%), whereas the IVS1 position 110 mutation, the most common cause of beta-thalassemia in the eastern part of the Mediterranean basin, is underrepresented (8.5%). The IVS1 mutation at position 6 accounts for 15% of the defects and leads to a more severe form of beta+-thalassemia than originally described in most of the patients we studied. In this study, we demonstrate further the usefulness of the dot-blot hybridization of PCR-amplified genomic DNA in both rapid population surveys and prenatal diagnosis of beta-thalassemia.  相似文献   

9.
6 out of 14 uncharacterized beta-thalassemia alleles from 187 Thai beta-thalassemia/HbE patients were identified by direct sequencing of DNA amplified by polymerase chain reaction. A novel mutation occurring from an insertion of adenosine in codon 95, which results in a shift of the reading frame with terminator at the new codon 101, was detected in one patient. In addition, two frameshift mutations not previously reported among the Thai population were also detected in 3 patients: one with a deletion of thymidine in codon 15 and two with an insertion of cytidine in codons 27/28. A frameshift mutation that occurred from a cytidine deletion in codon 41 was also found in one patient in this study. The remaining case was an amber mutation, GAG-TAG, in codon 43 in exon 2 of the beta-globin gene. These mutations bring the number of mutations known to be present in the Thai population to a total of 20, 15 of which were detected in beta-thalassemia/HbE patients.  相似文献   

10.

CONTEXT:

β-thalassemia is one of the most common heterogeneous inherited single gene disorders. The disease results from one or more of 380 different mutations in the β-globin gene. Uttar Pradesh (U.P.) is the most populous state of India, comprising various ethnic groups and Bareilly is one of the largest cities situated in Western U.P.

AIMS:

To examine the prevalence of five common β-thalassemian mutations: Intervening Sequence IVS 1-5 (c. 92 + 5 G > C), codon 8/9 (c. 27_28insG), codon 41/42 (c. 124_127delTTCT), IVS 1-1 (c. 92 + 1 G > T) and codon 26 G-A (c. 79G > A) in Western U.P.

SETTINGS AND DESIGN:

Patients attending camps organized by the Thalassemia Society, Bareilly were selected for the study.

MATERIALS AND METHODS:

A total of 48 blood samples were collected from the patients of transfusion dependent β-thalassemia from July 2011 to May 2012. All the samples were analyzed for five common mutations by using the Amplification Refractory Mutation System (ARMS)-hot start-polymerase chain reaction (PCR) technique.

RESULTS:

Among the five common mutations prevalent in India, we were able to detect all except codon 26 G-A (c. 79G > A), which is prevalent in northeast India. These four mutations accounted for 58% of the total number of our patients. The IVS 1-5 (G-C) was found to be the most common mutation with a frequency of 46% and the 2 ndmost common mutation was Fr8/9 (+G) with a frequency of 21%. The frequency of other mutations was IVS1-1 (12%) and Cd 41/42 (4%).

CONCLUSION:

This study provides evidence that the pattern of mutations in Western U.P. is different from the rest of India and even from the neighboring states (Delhi and Punjab). To the best of our knowledge, mutation Fr8/9, the 2ndmost common mutation in our study has never been reported to be so common from anywhere in India. Some mutations, which are prevalent in other regions are absent in our region (mutation for ε-globin). Hence, these findings can be called unique to Western U.P.  相似文献   

11.
This study reports the molecular characterization of beta-thalassemia in the Sardinian population. Three thousand beta-thalassemia chromosomes from prospective parents presenting at the genetic service were initially analyzed by dot blot analysis with oligonucleotide probes complementary to the most common beta-thalassemia mutations in the Mediterranean at-risk populations. the mutations which remained uncharacterized by this approach were defined by denaturing gradient gel electrophoresis (DGGE) followed by direct sequence analysis on amplified DNA. We reconfirmed that the predominant mutation in the Sardinian population is the codon 39 nonsense mutation, which accounts for 95.7% of the beta-thalassemia chromosomes. The other two relatively common mutations are frameshifts at codon 6 (2.1%) and at codon 76 (0.7%), relatively uncommon in other Mediterranean-origin populations. In this study we have detected a novel beta-thalassemia mutation, i.e., a frameshift at codon 1, in three beta-thalassemia chromosomes. The DGGE procedure followed by direct sequencing on amplified DNA is a powerful approach for the characterization of unknown mutations in this genetic system. The results herein presented allowed an expansion of the applicability of prenatal diagnosis by DNA analysis, to all couples at risk for beta-thalassemia in our population.  相似文献   

12.
Summary In order to delineate the spectrum and the relative abundance of -globin gene defects causing thalassaemia in the Portuguese population, a representative sample was analysed including 51 -thalassaemia carriers along with 26 patients representing different clinical phenotypes. Seven mutations were identified, four of which [codon 39 (CT), 39%; intervening sequence (IVS)1 nucleotide (nt) 1 (GA), 26%; IVS1 nt 110 (GA), 17%; IVS1 nt6 (TC), 15%] account for 97% of 93 -thalassaemia chromosomes. Two previously undescribed mutations, namely a CT substitution at position — 90 in the proximal CACCC box, and the deletion of nucleotides 4 and 5 (AG) in IVS 2 were identified. The uncommon, though ubiquitous, GT transversion at codon 121 was found once upon haplotype V. Direct prenatal diagnosis can be offered to 95% of couples at risk of bearing a thalassaemic child.  相似文献   

13.
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disorder caused by deficiency of the glycogen-debranching enzyme (AGL). Recent studies of the AGL gene have revealed the prevalent mutations in North African Jewish and Caucasian populations, but whether these common mutations are present in other ethnic groups remains unclear. We have investigated eight Japanese GSD IIIa patients from seven families and identified seven mutations, including one splicing mutation (IVS 14+1G-->T) previously reported by us, together with six novel ones: a nonsense mutation (L124X), a splice site mutation (IVS29-1G-->C), a 1-bp deletion (587delC), a 2-bp deletion (4216-4217delAG), a 1-bp insertion (2072-2073insA), and a 3-bp insertion (4735-4736insTAT). The last mutation results in insertion of a tyrosine residue at a putative glycogen-binding site, and the rest are predicted to cause synthesis of truncated proteins lacking the glycogen-binding site at the carboxyl terminal. Thirteen novel polymorphisms have also been revealed in this study: three amino acid substitutions (R387Q, G1115R, and E1343 K), one silent point mutation (L298L), one nucleotide change in the 5'-noncoding region, and eight nucleotide changes in introns. Haplotype analysis with combinations of these polymorphic markers showed L124X, IVS14+1G-->T, and 4216-4217delAG to be on different haplotypes. These results demonstrate the importance of the integrity of the carboxy terminal domain in the AGL protein and the molecular heterogeneity of GSD IIIa in Japan.  相似文献   

14.
The origins and genetic affinities of the more than 500 tribal populations living in South Asia are widely disputed. This may reflect differential contributions that continental populations have made to tribal groups in South Asia. We assayed for the presence of the intergenic COII/tRNALys 9-bp deletion in human mtDNA in 646 individuals from 12 caste and 14 tribal populations of South India and compared them to individuals from Africa, Europe, and Asia. The 9-bp deletion is observed in four South Indian tribal populations, the Irula, Yanadi, Siddi, and Maria Gond, and in the Nicobarese. Length polymorphisms of the 9-bp motif are present in the Santal, Khonda Dora, and Jalari, all of whom live in a circumscribed region on the eastern Indian coast. Phylogenetic analyses of mtDNA control region sequence from individuals with the 9-bp deletion indicate that it has arisen independently in some Indian tribal populations. Other 9-bp deletion haplotypes are likely to be of Asian and African origin, implying multiple origins of the 9-bp deletion in South India. These results demonstrate varying genetic affinities of different South Indian tribes to continental populations and underscore the complex histories of the tribal populations living in South Asia. Am J Phys Anthropol 109:147–158, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

15.
To characterize mutations in the CYP21B gene that are responsible for congenital adrenal hyperplasia (CAH), DNA samples from 91 French patients have been studied by allelic-specific oligonucleotide hybridization and Southern blot analysis. Seven sites mostly found in the CYP21A pseudogene and deletions of the functional CYP21B gene have been screened. Gene conversions involving small DNA segments accounted for 57% of the tested mutations and probably cause 74% of the mutations responsible for the disease. Complete deletion of the CYP21B gene accounted for 18% of the CAH mutations in the whole sample and for 21% in the classical form of the disease. Three mutations were found associated with specific clinical forms of the disease: a G-C substitution in the seventh exon was associated with the late-onset form of the disease, and both an 8-bp depletion in the third exon and complete deletion of CYP21B were associated with the salt-wasting form.  相似文献   

16.
DNA from 93 Chinese beta-thalassemia chromosomes were hybridized to eight different mutant oligomers to determine their specific mutation. Four mutations accounted for 87% of the chromosomes; in descending frequencies, these mutations were codon 41/42, IVS-2 nt654, codon 17, and -28. Since codon 41/42 mutation can be associated with multiple beta-thalassemia haplotypes, codon 41/42 is probably a hot spot for the 4-bp deletion. The distributions of these mutations were mapped to various regions in south China. These data are useful for the planning of prenatal diagnosis programs in other Chinese communities worldwide.  相似文献   

17.
Beta-thalassemia is uncommon (0.5%) in the Romanian population, but it must be considered in the differential diagnosis of hypochromic anemia. The molecular characterization of beta-thalassemia is absolutely necessary for molecular diagnosis, as well as any genetic epidemiological study in this region. Molecular analyses consist of mutation detection by molecular scanning of beta-globin gene. This gene has 3 exons and 2 introns, involved in beta-thalassemic pathogenesis. Clinical application of DNA analysis on beta-thalassemic chromosomes allowed characterization of 29 persons with different beta-thalassemia mutations among 58 patients with anemia. The experimental strategy was based on sequential PCR amplification of most of the beta-globin gene and running on denaturing gradient gel electrophoresis of amplification products. Definitive characterization of mutations in samples identified with shifted DGGE patterns was performed ARMS-PCR and/or PCR-restriction enzyme analysis methods. Eight different beta-thalassemia alleles were identified, the most common being IVS I-110 (G-A) and cd 39 (C-T). Comparison of overall frequency of mutations in the neighboring countries, shows that these results are in the frame of overall distribution of these mutations in Mediterranean area, especially in Greece and in Bulgaria. Molecular diagnosis is useful for differentiating mild from severe alleles, for genetic counseling, as well as for mutation definition in carriers, identified by hematological analysis necessary for prenatal testing and genetic counseling.  相似文献   

18.
19.
Summary -Thalassemia mutations in 71 chromosomes of Thai patients from the northeast, the middle and the south of the country were investigated using dot blot hybridization of PCR (polymerase chain reaction)-amplified DNA with allelespecific oligonucleotide probes. Eight different known molecular defects were detected, at different frequencies. There was an amber mutation in codon 17, a C-T transversion at position 654 of IVS-2, a frameshift mutation between codons 71 and 72, an A-G transition at nucleotide -28 within the TATA box (known as Chinese mutations), a G-T transversion at position 1 of IVS-1 (an Indian mutation), a 4bp deletion in codons 41/42 and a G-C transversion at position 5 of IVS-1 (described as both Chinese and Indian mutations) and a Thai original mutation, an ochre mutation in codon 35. Analysis of the three unknown alleles by DNA sequencing of the cloned DNA fragment amplified by PCR revealed an A-G substitution at the second position of the codon for amino acid 19 (AAC-AGC). The analytic approach used in the present study and the characteristic distribution of mutations in each region of Thailand will prove useful for setting up a prenatal diagnosis program.  相似文献   

20.
Accurate animal models that recapitulate the phenotype and genotype of patients with beta-thalassemia would enable the development of a range of possible therapeutic approaches. Here we report the generation of a mouse model carrying the codons 41-42 (-TTCT) beta-thalassemia mutation in the intact human beta-globin locus. This mutation accounts for approximately 40% of beta-thalassemia mutations in southern China and Thailand. We demonstrate a low level of production of gamma-globins from the mutant locus in day 18 embryos, as well as production of mutant human beta-globin mRNA. However, in contrast to transgenic mice carrying the normal human beta-globin locus, 4-bp deletion mice fail to show any phenotypic complementation of the knockout mutation of both murine beta-globin genes. Our studies suggest that this is a valuable model for gene correction in hemopoietic stem cells and for studying the effects of HbF inducers in vivo in a "humanized" thalassemic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号