首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation analysis of Taiwanese Wilson disease patients   总被引:5,自引:0,他引:5  
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper-transporting ATPase (ATP7B). In the present study, we report a molecular diagnosis method to screen the WD chromosome in patients or in heterozygotic carriers in Taiwan. Exons 8, 11, 12, 13, 16, 17, and 18 of ATP7B are selected for the screening of mutations. The most common mutation, Arg778Leu or Arg778Gln, was first screened by PCR-RFLP then we combined single-stranded conformation polymorphism (SSCP) analysis followed by direct DNA sequencing on the DNA fragments with mobility shift on SSCP analysis. The diagnostic rate was compared with standard ATP7B whole gene sequencing analysis. Ten different mutations were identified among 29 WD patients; among them four were novel (Ala1168Pro, Thr1178Ala, Ala1193Pro, and Pro1273Gln). The false positive rates were tested against 100 normal individuals and listed as follows: exon 8: 5%; exon 11: 4%; exon 12: 6%; exon 13: 5%; exon 16: 5%; exon 17: 3%; exon 18: 4%. The Arg778Leu mutation exhibited the highest allelic frequency (43.1%). The detection rate of WD chromosomes is 65.52%, which is as sensitive as whole gene sequencing scanning. According to our results, WD chromosomes in Taiwan are predominantely located at exons 8, 11, 12, 13, 16, 17, and 18. The standard sequencing analysis on the entire gene is time consuming. We recommend screening these 7 exons first on those individuals who have a higher risk in having WD, before whole gene and promoter sequencing analysis in Taiwan.  相似文献   

2.
Herein we report the results of mutation analysis of the ATP7B gene in a group of 134 Wilson disease (WD) families (268 chromosomes) prevalently of Italian origin. Using the SSCP and sequencing methods we identified 71 disease-causing mutations. Twenty-four were novel, while 19 more mutations already described, were identified in new populations in this study. A known mutation G591D showed a regional distribution, since it was only detected in 38.5% of the analyzed chromosomes in WD patients originating from Apulia, a region of South Italy. Detection of new mutations in the ATP7B gene increases our capability of molecular analysis that is essential for early diagnosis and treatment of WD.  相似文献   

3.
Wilson disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver and subsequently in the brain and other organs. On the basis of sequence homology to known genes, the WD gene (ATP7B) appears to be a copper-transporting P-type ATPase. A search for ATP7B mutations in WD patients from five population samples, including 109 North American patients, revealed 27 distinct mutations, 18 of which are novel. A composite of published findings shows missense mutations in all exons-except in exons 1-5, which encode the six copper-binding motifs, and in exon 21, which spans the carboxy-terminus and the poly(A) tail. Over one-half of all WD mutations occur only rarely in any population sample. A splice-site mutation in exon 12 accounts for 3% of the WD mutations in our sample and produces an in-frame, 39-bp insertion in mRNA of patients homozygous, but not heterozygous, for the mutation. The most common WD mutation (His1069Glu) was represented in approximately 38% of all the WD chromosomes from the North American, Russian, and Swedish samples. In several population cohorts, this mutation deviated from Hardy-Weinberg equilibrium, with an overrepresentation of homozygotes. We did not find a significant correlation between His1069Glu homozygosity and several clinical indices, including age of onset, clinical manifestation, ceruloplasmin activity, hepatic copper levels, and the presence of Kayser-Fleischer rings. Finally, lymphoblast cell lines from individuals homozygous for His1069Glu and 4 other mutations all demonstrated significantly decreased copper-stimulated ATPase activity.  相似文献   

4.
Wilson disease (WD) is an autosomal recessive disorder of copper biliary excretion caused by an impaired function of ATP7B, a metal-transporting P-type ATPase encoded by WD gene. It results in copper accumulation, mostly in liver and brain tissues. Mutation analysis was carried out on 11 WD French unrelated patients presenting a predominant neurological form of this illness. SSCP and dHPLC analysis followed by sequencing of the 21 exons and their flanking introns were performed. Thirteen different mutations in a total of 17, and, among them, 10 novel variants were evidenced. Two deletions (c.654_655delCC and c.1745_1746delTA), 4 missense mutations (p.F763Y, p.G843R, p.D918A and p.L979Q), 1 nonsense mutation (p.Q1200X), 1 splice site mutation (c.1947-1G>C) and 2 intronic silent substitutions (c.2448-25G>T and c.3412+13T>A) were detected. These data extend the mutational spectrum of the disease, already known to be a very heterogeneous genetic disorder. As compared to hepatic manifestations, the phenotypes associated to these mutations confirm that neurological presentations associated with other mutations than p.H1069Q are also often late in their onset. Most of these neurological forms probably correspond to an attenuated impairment of copper metabolism, as compared to hepatic forms of the disease, mostly diagnosed earlier.  相似文献   

5.
In this study, we report the further results of an ongoing project on the delineation of the spectrum of mutations on the ATP7B gene in Wilson disease (WD) patients of Greek origin. We have analyzed 24 additional families and detected 16 mutations (five frameshifts, two splice site, two nonsense, and seven missense), of which six are novel. On adding these results to the ones already published by us, we conclude that WD shows a marked allelic heterogeneity in the Greek population. Of the total number of mutations so far detected, the most common eight account for the molecular defect in 72.8% of the WD chromosomes. The most frequent mutation is the His0169Gln, which has a frequency of 28.5%, similar to those reported in North European populations. Using these data, an efficient strategy of mutation screening for WD is possible in this population, thus improving the possibility of preclinical diagnosis.  相似文献   

6.
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism characterized by hepatic and/or neurological damage. More than 300 mutations in gene ATP7B causing this defect have been reported. The data on correlation between WD patient genotypes and clinical presentation are controversial. In this paper, the results of ATP7B mutation analysis by testing for mutation H1069Q and direct sequencing of six exons together with the clinical data of 40 Latvian WD patients are presented. Two previously described and two novel mutations as well as one previously reported polymorphism were identified. The H1069Q mutation was present at 52.5% of the disease alleles. One individual among 157 healthy Latvians was also found to be a mutation H1069Q carrier. The estimated incidence of WD in Latvia is ∼1 in 25600. Wide clinical variability was observed among individuals with the same ATP7B genotype, thus supporting the suggestion that modifying factors play an additional role in the pathogenesis of WD. An algorithm for the diagnosis of WD, including testing for mutation H1069Q, is recommended for the populations where mutation H1069Q accounts for 50% of WD alleles or more. The text was submitted authors English.  相似文献   

7.
ATP7B mutations result in Cu storage in the liver and brain in Wilson disease (WD). Atox1 and COMMD1 were found to interact with ATP7B and involved in copper transport in the hepatocyte. To understand the molecular etiology of WD, we analyzed ATP7B, Atox1 and COMMD1 genes. Direct sequencing of (i) ATP7B gene was performed in 112 WD patients to identify the spectrum of disease-causing mutations in the French population, (ii) Atox1 gene was performed to study the known polymorphism 5'UTR-99T>C in 78 WD patients with two ATP7B mutations and (iii) COMMD1 gene was performed to detect the nucleotide change c.492GAT>GAC. MLPA (Multiplex Ligation-dependent Probe Amplification) analysis was performed in WD patients presenting only one ATP7B mutation. Among our 112 WD unrelated patients, 83 different ATP7B gene mutations were identified, 27 of which were novel. Two ATP7B mutations were identified in 98 WD cases, and one mutation was identified in 14 cases. In two of these 14 WD patients, we identified the deletion of exon 4 of the ATP7B gene by MLPA technique. In 78 selected patients of the cohort with two mutations in ATP7B, we have examined genotype-phenotype correlation between the detected changes in Atox1 and COMMD1 genes, and the presentation of the WD patients. Based on the data of this study, no major role can be attributed to Atox1 and COMMD in the pathophysiology or clinical variation of WD.  相似文献   

8.
9.
The present study was intented to estimate the frequencies of the most common mutations (R778L, R778W, R778G, I1102T and H1069Q) of ATP7B in Indian Wilson disease (WD) population and to explore the correlation between genotype/phenotype and copper ATPase activity. A total of 33 WD patients and their family members from North West states of India were examined. The H1069Q, R778W and R778L mutations were absent in these WD patients. R778W and I1102T mutations were present in 36% of WD patients. Family analysis for these mutations using PCR-RFLP documented 5 carriers and 2 asymptomatic WD patients. The copper ATPase activity in WD patients was significantly reduced (50%) than that of control individuals. No significant difference was observed in copper stimulated ATPase activity between homozygous (R778W/R778W, I1102T/I1102T) and compound heterozygous (R778W/unknown mutation, I1102T/unknown mutation) WD patients. Serum ceruloplasmin, serum copper levels were significantly lower in homozygous WD patients than that of compound heterozygous. However, no significant difference was observed in liver copper contents between heterozygous and homozygous patients. In conclusion, the data suggest that R778W and I1102T are most common mutations and provide the basis of genetic (PCR-RFLP) diagnostic tool for Indian WD patients as well as in siblings/parents where biochemical parameters are ambiguous.  相似文献   

10.
Wilson disease (WD) is an autosomal recessive disorder of hepatic copper metabolism caused by mutations in a gene encoding a copper-transporting P-type ATPase, ATP7B. The majority of known mutations affecting this gene are frequent in different populations, which may help to introduce rapid diagnostic procedures based on direct DNA analysis into routine clinical practise. The His1069Gln mutation in exon 14 is the most frequent one, accounting for 30-60% of all mutations in Caucasian patients. The aim of the present work was to introduce DNA-based direct analysis into routine molecular screening for the above mutation in Slovak WD patients and to assess its frequency in patients as well as in a control population. Twenty seven clinicaly diagnosed patients from twenty five families, twenty relatives of index patients and three hundred and six control DNA samples were tested using two different DNA-based methods: the earlier described amplification created restriction site (ACRS) for Alw21I in combination with nested PCR and the amplification refractory mutation system (ARMS). In 18 of 25 unrelated patients (72%), the mentioned genetic defect was present in at least one copy. In ten of them (40%), the above mutation was detected in homozygous and in eight individuals (32%) in heterozygous state. In seven WD patients (28%), this mutation was not detected. The allele frequency of His1069Gln in Slovak patients with WD was 56%, which was higher as reported in other populations. In a control group of 306 random DNA samples (612 alleles), the His1069Gln mutation was observed in 3 samples (carrier frequency 1%; allele frequency 0.49%). These frequencies correspond to figures observed in different population of European origin. Taken together, we have provided further evidence that the His1069Gln mutation is the prevalent ATP7B mutation in central-european WD patients. Although both methods used in this study worked in our hands reliably, there are in every-day use some drawbacks and limitations inherent to them (PCR reactions in two tubes, possibility of star activity or not complet digestion by restriction endonuclease, etc.). Therefore we developed a simpler, cost effective and rapid DNA diagnostic test based on bidirectional amplification of specific alleles (BI-PASA), which enables detection of homozygotes (wild and mutant) and heterozygotes, respectivelly, in one PCR reaction. The test was highly sensitive and specific, yielding no false-positive or false-negative results. Its reliability and discriminating power was tested on samples of 27 WD patients and 120 random control DNA's, previously genotyped by above mentioned methods. Comparing results of BI-PASA with ACRS and ARMS tests showed 100% concordance.  相似文献   

11.
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. The gene responsible for WD was discovered in 1993 and is located on chromosome 13 at 13q14.3. It encodes a copper-specific transporting P-type ATPase. Early diagnosis can improve treatment outcome and decrease the rate of disability or even mortality. We used Sanger sequencing to identify mutation hot spots in 55 northern Vietnamese with a clinical diagnosis of WD. Mutations were screened and detected by direct DNA sequencing. A total of 26 different ATP7B gene mutations were identified, including seven novel mutations (five nonsense and two missense mutations). The most frequent mutations were p.Ser105Ter (24.55%), p.Arg778Leu (5.45%) and p.Thr850Ile (4.55%). Mutation detection rate in exon 2 was 34.55% and ranked first, followed by exon 8 with 16.36%, and exon 18 with 10.91% each, thus, exons 2, 8 and 18 are the mutation hot spots for northern Vietnamese WD patients. These findings were different from previous studies in Asia. Our research established a suitable strategy for ATP7B gene testing in northern Vietnamese WD patients.  相似文献   

12.
Wilson disease (WD) is a disorder of copper metabolism caused by mutations in the Cu-transporting ATPase ATP7B. WD is characterized by significant phenotypic variability, the molecular basis of which is poorly understood. The E1064A mutation in the N-domain of ATP7B was previously shown to disrupt ATP binding. We have now determined, by NMR, the structure of the N-domain containing this mutation and compared properties of E1064A and H1069Q, another mutant with impaired ATP binding. The E1064A mutation does not change the overall fold of the N-domain. However, the position of the α1,α2-helical hairpin (α-HH) that houses Glu(1064) and His(1069) is altered. The α-HH movement produces a more open structure compared with the wild-type ATP-bound form and misaligns ATP coordinating residues, thus explaining complete loss of ATP binding. In the cell, neither the stability nor targeting of ATP7B-E1064A to the trans-Golgi network differs significantly from the wild type. This is in a contrast to the H1069Q mutation within the same α-HH, which greatly destabilizes protein both in vitro and in cells. The difference between two mutants can be linked to a lower stability of the α-HH in the H1069Q variant at the physiological temperature. We conclude that the structural stability of the N-domain rather than the loss of ATP binding plays a defining role in the ability of ATP7B to reach the trans-Golgi network, thus contributing to phenotypic variability in WD.  相似文献   

13.
Ferenci P 《Human genetics》2006,120(2):151-159
Wilson disease is an autosomal recessive inherited disorder of copper metabolism. The Wilson disease gene codes for a copper transporting P-type ATPase (ATP7B). Molecular genetic analysis reveals at least 300 distinct mutations. While most reported mutations occur in single families, a few are more common. The most common mutation in patients from Central, Eastern, and Northern Europe is the point mutation H1069Q (exon 14). About 50–80% of Wilson disease (WD) patients from these countries carry at least one allele with this mutation with an allele frequency ranging between 30 and 70%. Other common mutations in Central and Eastern Europe are located on exon 8 (2299insC, G710S), exon 15 (3400delC) and exon 13 (R969Q). The allele frequency of these mutations is lower than 10%. In Mediterranean countries there is a wide range of mutations, the frequency of each of them varies considerably from country to country. In Sardinia, a unique deletion in the 5′ UTR (−441/−427 del) is very frequent. In mainland Spain the missense mutation M645R in exon 6 is particularly common. Data from non-European countries are scarce. Most data from Asia are from Far Eastern areas (China, South Korea and Japan) where the R778L missense mutation in exon 8 is found with an allele frequency of 14–49%. In summary, given the constant improvement of analytic tools genetic testing will become an integral part for the diagnosis of WD. Knowledge of the differences in the worldwide distribution of particular mutations will help to design shortcuts for genetic diagnosis of WD.  相似文献   

14.
Wilson disease is associated with a defect in copper metabolism and caused by different mutations in ATP7B gene. The aim of this study was to determine mutation frequency of ATP7B exons 8 and 14 in Wilson disease patients from the south of Iran. The exons 8 and 14 of ATP7B gene were analyzed in 65 unrelated Wilson disease patients by Denaturing High Performance Liquid Chromatography, and samples with abnormal peak profile were selected for direct DNA sequencing. Seven out of 65 (10.8%) patients had mutations at exon 14, including c.3061-1G>A in four and c.3207C>A in three patients. In addition, four different mutations were identified at exon 8 of six patients (9.2%). Three of these mutations have been previously reported, including c.2304delC in two patients, c.2293G>A and 2304dupC each in one patient. Furthermore, a novel mutation, c.2335T>G (p.Trp779Gly), was identified in two unrelated patients. The patients with this novel mutation demonstrated severe neuropsychiatric condition. All together, 13 out of 65 (20%) patients had mutations within exons 8 and 14. We also identified a lower frequency of the most common mutations of exons 8 and 14 in the southern Iranian population.  相似文献   

15.
Aims We aim to identify the molecular defects in the ATP7B, the causal gene for Wilson disease (WD), in eastern Indian patients and attempt to assess the overall mutation spectrum in India for detection of mutant allele for diagnostic purposes. Methods Patients from 109 unrelated families and their first-degree relatives comprising 400 individuals were enrolled in this study as part of an ongoing project. Genomic DNA was prepared from the peripheral blood of Indian WD patients. PCR was done to amplify the exons and flanking regions of the WD gene followed by sequencing, to identify the nucleotide variants. Results In addition to previous reports, we recently identified eight mutations including three novel (c.3412 + 1G > A, c.1771 G > A, c.3091 A > G) variants, and identified patients with variable phenotype despite similar mutation background suggesting potential role of modifier locus. Conclusions So far we have identified 17 mutations in eastern India including five common mutations that account for 44% of patients. Comparative study on WD mutations between different regions of India suggests high genetic heterogeneity and the absence of a single or a limited number of common founder mutations. Genotype–phenotype correlation revealed that no particular phenotype could be assigned to a particular mutation and even same set of mutations in different patients showed different phenotypes.  相似文献   

16.
The copper-transporting ATPase ATP7B has an essential role in human physiology, particularly for the liver and brain function. Inactivation of ATP7B is associated with a severe hepato-neurologic disorder, Wilson disease (WD). Hundreds of WD related mutations have been identified in ATP7B to date. The low frequency and the compound-heterozygous nature of causative mutations complicate the analysis of individual mutants and the establishment of genotype-phenotype correlations. To facilitate studies of disease-causing mutations and mechanistic understanding of WD, we have homology-modelled the ATP7B core (residues 643-1377) using the recent structure of the bacterial copper-ATPase LCopA as a template. The model, supported by evolutionary conservation and hydrophobicity analysis, as well as existing and new mutagenesis data, allows molecular interpretations of experimentally characterized clinical mutations. We also illustrate that structure and conservation can be used to grade potential deleterious effects for many WD mutations, which were clinically detected but have not yet been experimentally characterized. Finally, we compare the structural features of ATP7B and LCopA and discuss specific features of the eukaryotic copper pump.  相似文献   

17.
We analyzed mutations and defined the chromosomal haplotype in 127 patients of Mediterranean descent who were affected by Wilson disease (WD), 39 Sardinians, 49 Italians, 33 Turks, and 6 Albanians. Haplotypes were derived by use of the microsatellite markers D13S301, D13S296, D13S297, and D13S298, which are linked to the WD locus. There were five common haplotypes in Sardinians, three in Italians, and two in Turks, which accounted for 85%, 32%, and 30% of the WD chromosomes, respectively. We identified 16 novel mutations: 8 frameshifts, 7 missense mutations, and 1 splicing defect. In addition, we detected the previously described mutations: 2302insC, 3404delC, Argl320ter, Gly944-Ser, and Hisl070Gin. Of the new mutations detected, two, the 1515insT on haplotype I and 2464delC on haplotype XVI, accounted for 6% and 13%, respectively, of the mutations in WD chromosomes in the Sardinian population. Mutations H1070Q, 2302insC, and 2533delA represented 13%, 8%, and 8%, respectively, of the mutations in WD chromosomes in other Mediterranean populations. The remaining mutations were rare and limited to one or two patients from different populations. Thus, WD results from some frequent mutations and many rare defects.  相似文献   

18.
The combination of disease-specific human induced pluripotent stem cells (iPSC) and directed cell differentiation offers an ideal platform for modeling and studying many inherited human diseases. Wilson’s disease (WD) is a monogenic disorder of toxic copper accumulation caused by pathologic mutations of the ATP7B gene. WD affects multiple organs with primary manifestations in the liver and central nervous system (CNS). In order to better investigate the cellular pathogenesis of WD and to develop novel therapies against various WD syndromes, we sought to establish a comprehensive platform to differentiate WD patient iPSC into both hepatic and neural lineages. Here we report the generation of patient iPSC bearing a Caucasian population hotspot mutation of ATP7B. Combining with directed cell differentiation strategies, we successfully differentiated WD iPSC into hepatocyte-like cells, neural stem cells and neurons. Gene expression analysis and cDNA sequencing confirmed the expression of the mutant ATP7B gene in all differentiated cells. Hence we established a platform for studying both hepatic and neural abnormalities of WD, which may provide a new tool for tissue-specific disease modeling and drug screening in the future.  相似文献   

19.
Background. Wilson’s disease (WD) is a rare inherited disorder caused by mutations in the ATP7B gene resulting in copper accumulation in different organs. However, data on ATP7B mutation spectrum in Russia and worldwide are insufficient and contradictory. The objective of the present study was estimation of the frequency of ATP7B gene mutations in the Russian population of WD patients. Materials and methods. 75 WDpatients were examined by next-generation sequencing (NGS). A targeted panel NimbleGen SeqCap EZ Choice: 151012_HG38_CysFib_EZ_HX3 (ROCHE)was designed for analysis of ATP7B gene and possible modifier genes. Retrospective assessment of a diagnostic WD score (Leipzig, 2001) was also performed. Results. 31 mutations in ATP7B gene were detected. Two most frequent mutations were c.3207C > A (51,85% of alleles) and c.3190 G > A (8,64% of alleles). Single rare mutations were detected in 29% of cases. In 96% cases mutations of both copies of the ATP7B were revealed. We also observed 3 novel potentially pathogenic variants which were not previously described (c.1870-8A > G, c.3655A > T (p.Ile1219Phe), c.3036dupC (p.Lys1013fs). For 25% of patients at the time of the manifestation the diagnosis WD could not be established using the earlier proposed diagnostic score. There was a remarkable delay in diagnosis for the majority of patients. Only 33% of patients WD was diagnosed in three months after the first symptoms, 29%patients - in 3–12 months, 30% – in 1–10 years, in 8% – more than 10 years. Generally, clinical appearance of WD may be rather variable at manifestation and genetic profiling at this step is the only way to confirm the presence of WD.  相似文献   

20.
Perturbation of the human copper-transporter Wilson disease protein (ATP7B) causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the nucleotide-binding subdomain (N-domain), including the most common mutation, H1069Q. To gain insight into the biophysical behavior of the N-domain under normal and disease conditions, we have characterized wild-type and H1069Q recombinant N-domains in vitro and in silico. The mutant has only twofold lower ATP affinity compared to that of the wild-type N-domain. Both proteins unfold in an apparent two-state reaction at 20 °C and ATP stabilizes the folded state. The thermal unfolding reactions are irreversible and, for the same scan rate, the wild-type protein is more resistant to perturbation than the mutant. For both proteins, ATP increases the activation barrier towards thermal denaturation. Molecular dynamics simulations identify specific differences in both ATP orientation and protein structure that can explain the absence of catalytic activity for the mutant N-domain. Taken together, our results provide biophysical characteristics that may be general to N-domains in other P1B-ATPases as well as identify changes that may be responsible for the H1069Q WD phenotype in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号