首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary neuropathy with liability to pressure palsies (HNPP) is a disorder of the peripheral nervous system, the cause of which has recently been identified as a deletion on chromosome 17p. The deletion corresponds to the duplication that is commonly observed in patients with hereditary motor and sensory neuropathy type Ia (HMSNIa, 17p11.2–p12). Therefore, the gene for peripheral myelin protein 22 (PMP-22) is a candidate gene for both HMSNIa and HNPP. Here, we show that a similar deletion is present in one family with HNPP but is clearly absent in another family. Affected members of this family carry the expected two copies of the PMP-22 gene and the surrounding region. Furthermore, linkage analyses of this family exclude a large part of 17p, spanning the area deleted in other families with HNPP, as the location for the disease gene. These data strongly argue for the existence of genetic heterogeneity underlying HNPP. Results from two-point linkage analysis with markers on chromosome 1q are inconsistent with a possible involvement of the locus for HMSNIb in the present family.  相似文献   

2.
Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies are the most commonly inherited neurological disorders in humans, characterized by clinical and genetic heterogeneity. The most prevalent clinical entities belonging to this group of disorders are CMT type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). CMT1A and HNPP are predominantly caused by a 1.5 Mb duplication and deletion in the chromosomal region 17p11.2, respectively, and less frequently by other mutations in the peripheral myelin protein 22 (PMP22) gene. Despite being relatively common diseases, they haven't been previously studied in the Slovak population. Therefore, the aim of this study was to identify the spectrum and frequency of PMP22 mutations in the Slovak population by screening 119 families with CMT and 2 families with HNPP for causative mutations in this gene. The copy number determination of PMP22 resulted in the detection of CMT1A duplication in 40 families and the detection of HNPP deletion in 7 families, 6 of which were originally diagnosed as CMT. Consequent mutation screening of families without duplication or deletion using dHPLC and sequencing identified 6 single base changes (3 unpublished to date), from which only c.327C>A (Cys109X) present in one family was provably causative. These results confirm the leading role of PMP22 mutation analysis in the differential diagnosis of CMT and show that the spectrum and frequency of PMP22 mutations in the Slovak population is comparable to that seen in the global population.  相似文献   

3.
Charcot-Marie-Tooth disease (CMT) and hereditary neuropathy with liability to pressure palsies (HNPP) are two inherited peripheral neuropathies. The most prevalent mutations are a reciprocal 1.5-Mb duplication and 1.5-Mb deletion, respectively, at the CMT1A/HNPP locus on chromosome 17p11.2. Point mutations in the coding region of the myelin genes, peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ) or connexin 32 (Cx32) have been reported in CMT patients, including CMT type 1 (CMT1), CMT type 2 (CMT2) and Déjérine-Sottas neuropathy (DS) patients, and only in the coding region of PMP22 in HNPP families lacking a deletion. We have investigated point and small mutations in the MPZ, PMP22 and Cx32 genes in a series of patients of Spanish ancestry: 47 CMT patients without duplications, and 5 HNPP patients without deletions. We found 15 different mutations in 16 CMT patients (34%). Nine different mutations in ten patients were detected in the Cx32 gene, this being the most frequently involved gene in this series, whereas five mutations involved the MPZ gene and only one the PMP22 gene. Six out of nine nucleotide substitutions in the Cx32 gene involved two codons encoding arginine at positions 164 and 183, suggesting that these two codons may constitute two Cx32 regions prone to mutate in the Spanish population. Analysis of HNPP patients revealed a 5′ splicing mutation in intron 1 of the PMP22 gene in a family with autosomal dominance, which confirms allelic heterogeneity in HNPP. Ectopic mRNA analysis on leukocytes suggests that this mutation might behave as a null allele. Received: 25 July 1996 / Revised: 15 November 1996  相似文献   

4.
Charcot-Marie-Tooth type 1A (CMT1A) disease and hereditary neuropathy with liability to pressure palsies (HNPP) are autosomal dominant neuropathies, associated, respectively, with duplications and deletions of the same 1.5-Mb region on 17p11.2-p12. These two rearrangements are the reciprocal products of an unequal meiotic crossover between the two chromosome 17 homologues, caused by the misalignment of the CMT1A repeat sequences (CMT1A-REPs), the homologous sequences flanking the 1.5-Mb CMT1A/HNPP monomer unit. In order to map recombination breakpoints within the CMT1A-REPs, a 12.9-kb restriction map was constructed from cloned EcoRI fragments of the proximal and distal CMT1A-REPs. Only 3 of the 17 tested restriction sites were present in the proximal CMT1A-REP but absent in the distal CMT1A-REP, indicating a high degree of homology between these sequences. The rearrangements were mapped in four regions of the CMT1A-REPs by analysis of 76 CMT1A index cases and 38 HNPP patients, who where unrelated. A hot spot of crossover breakpoints, located in a 3.2-kb region, accounted for three-quarters of the rearrangements, detected after EcoRI/SacI digestion, by the presence of 3.2-kb and 7.8-kb junction fragments in CMT1A and HNPP patients, respectively. These junction fragments, which can be detected on classical Southern blots, permit molecular diagnosis. Other rearrangements can also be detected by gene dosage on the same Southern blots.  相似文献   

5.
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder with an increased susceptibility of peripheral nerves to mechanical lesions resulting in transient nerve palsies. Many carriers remain asymptomatic but can be traced by electrophysiological examination, thereby demonstrating that HNPP is a generalised polyneuropathy. By using highly polymorphic markers linkage analysis was performed in a large family with HNPP. This resulted in a maximum lod score of 4.20 at =0.10 with D17S520. Three-point linkage suggests that the gene for HNPP is located on chromosome 17 in the region between D17S250 (q11.2–q12) and D17S520 (p12), a region that has recently been shown to encompass a locus for another hereditary neuropathy, hereditary motor and sensory neuropathy type 1 (HMSN type 1). This raises the possibility that HNPP and this form of HMSN type 1 are allelic. In keeping with this speculation is our recent finding that D17S122, another marker from the HMSN type 1 region, displays apparent loss of heterozygosity in this family.  相似文献   

6.
Peripheral myelin protein 22 (PMP 22) is a component of compact myelin in the peripheral nervous system. The amount of PMP 22 in myelin is tightly regulated, and PMP 22 over or under‐expression cause Charcot‐Marie‐Tooth 1A (CMT 1A) and Hereditary Neuropathy with Pressure Palsies (HNPP ). Despite the importance of PMP 22 , its function remains largely unknown. It was reported that PMP 22 interacts with the β4 subunit of the laminin receptor α6β4 integrin, suggesting that α6β4 integrin and laminins may contribute to the pathogenesis of CMT 1A or HNPP . Here we asked if the lack of α6β4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP 22 and β4 integrin may not interact directly in myelinating Schwann cells, however, ablating β4 integrin delays the formation of tomacula, a characteristic feature of HNPP . In contrast, ablation of integrin β4 worsens nerve conduction velocities and non‐compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.

  相似文献   

7.
Hereditary neuropathy with liability to pressure palsies (HNPP) is in most cases associated with an interstitial deletion of the same 1.5-Mb region at 17p11.2 that is duplicated in Charcot-Marie-Tooth type 1A (CMT1A) patients. Unequal crossing-over following misalignment at flanking repeat sequences (CMT1A-REP), either leads to tandem duplication in CMT1A patients or deletion in HNPP patients. With the use of polymorphic DNA markers located within the CMT1A/HNPP duplication/deletion region we detected the HNPP deletion in 16 unrelated HNPP patients, 11 of Belgian and 5 of French origin. In all cases, the 1.5-Mb size of the HNPP deletion was confirmed by EcoRI dosage analysis using a CMT1A-REP probe. In the 16 HNPP patients, the same 370/320-kb EagI deletion-junction fragments were detected with pulsed field gel electrophoresis (PFGE), while in CMT1A patients, a 150-kb EagI duplication-junction fragment was seen. Thus, PFGE analysis of EagI-digested DNA with a CMT1A-REP probe allows direct detection of the HNPP deletion or the CMT1A duplication for DNA diagnostic purposes.  相似文献   

8.
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder characterized by recurrent mononeuropathies. A 1.5-Mb deletion in chromosome 17p11.2-p12 has been associated with HNPP. Duplication of the same 1.5-Mb region is known to be associated with Charcot-Marie-Tooth disease type 1 (CMT1A), a more severe peripheral neuropathy characterized by symmetrically slowed nerve conduction velocity (NCV). The CMT1A duplication and HNPP deletion appear to be the reciprocal products of a recombination event involving a repeat element (CMT1A-REP) that flanks the 1.5-Mb region involved in the duplication/deletion. Patients from nine unrelated Italian families who were diagnosed with HNPP on the basis of clinical, electrophysiological, and histological evaluations were analyzed by molecular methods for DNA deletion on chromosome 17p. In all nine families, Southern analysis using a CMT1A-REP probe detected a reduced hybridization signal of a 6.0-kb EcoRI fragment mapping within the distal CMT1A-REP, indicating deletion of one copy of CMT1A-REP in these HNPP patients. Families were also typed with a polymorphic (CA)n repeat and with RFLPs corresponding to loci D17S122, D17S125, and D17S61, which all map within the deleted region. Lack of allelic transmission from affected parent to affected offspring was observed in four informative families, providing an independent indication for deletion. Furthermore, pulsed-field gel electrophoresis analysis of SacII-digested genomic DNA detected junction fragments specific to the 1.5-Mb HNPP deletion in seven of nine Italian families included in this study. These findings suggest that a 1.5-Mb deletion on 17p11.2-p12 is the most common mutation associated with HNPP.  相似文献   

9.
Aims:  To develop a rapid and sensitive detection method for cereulide-producing Bacillus cereus using a real-time PCR based on the sequence of the cereulide synthesis gene.
Methods and Results:  A total of 56 cereulide-producing B. cereus and 15 cereulide-negative strains were tested. We designed specific primers and probes for the detection of cereulide-producing B. cereus . The new cycleave real-time PCR assay gave positive detections for all of 56 cereulide-producing B. cereus strains, whereas all other strains including 10 systemic infectious disease strains were negative. No cross-reaction was observed and the internal control showed positive for all samples.
Conclusions:  The performance of the assay was highly reproducible and specific for cereulide-producing B. cereus . The positive detection was obtained within only 2 h for cereulide-producing strains. The detection limit of this assay was evaluated as 104 CFU g−1 food sample. The assay also confirmed that strains from systemic infectious cases were cereulide-negative.
Significance and Impact of the Study:  This assay is applicable for contaminated foods as well as specimens from infectious disease cases. We recommend this assay for routine examination of suspected B. cereus food poisonings.  相似文献   

10.
DNA methylation-based biomarkers have been discovered that could potentially be used for the diagnosis of cancer by detection of circulating, tumor-derived DNA in bodily fluids. Any methylation detection assay that would be applied to these samples must be capable of detecting small amounts of tumor DNA in the presence of background normal DNA. We have developed a real-time PCR assay, called HeavyMethyl, that is well suited for this application. HeavyMethyl uses methylation-specific oligonucleotide blockers and a methylation-specific probe to achieve methylation-specific amplification and detection. We tested the assays on unmethylated and artificially methylated DNA in order to determine the limit of detection. After careful optimization, our glutathione-S-transferase pi1 and Calcitonin assays can amplify as little as 30 and 60 pg of methylated DNA, respectively, and neither assay amplifies unmethylated DNA. The Calcitonin assay showed a highly significant methylation difference between normal colon and colon adenocarcinomas, and methylation was also detected in serum DNA from colon cancer patients. These assays show that HeavyMethyl technology can be successfully employed for the analysis of very low concentrations of methylated DNA, e.g. in serum of patients with tumors.  相似文献   

11.
Aim: The study describes the development of a simple and rapid tool to identify yeast‐like microalgae belonging to the genus Prototheca. Methods and Results: The method, based on two‐step Real Time PCR reaction followed by DNA Resolution Melting Analysis (qPCR/RMA), has been developed using reference strains belonging to both pathogenic (P. zopfii genotype 2, P. wickerhamii and P. blaschkeae) and nonpathogenic species (P. zopfii genotype 1, P. stagnora and P. ulmea). In order to validate the method, seventy recently isolated Prototheca strains were thus tested in parallel with both the first qPCR/RMA and the conventional genotype‐specific PCR assay: they were classified as P. zopfii genotype 1, P. zopfii genotype 2 and P. blaschkeae, with a perfect accordance between the two above methodologies. Furthermore, we used the second qPCR/RMA to identify the other species (P. stagnora, P. ulmea and P. wickerhamii), which cannot be discriminated by conventional PCR assay. Conclusions: The assay two‐step Real Time PCR is accurate, robust, cost‐effective and faster than auxonographical, biochemical or conventional molecular biology methods. Significance and Impact of the Study: the rapid and high throughout two‐step qPCR/RMA tool can be usefully used for the identification of clinical and environmental Prototheca species into the framework of the diagnosis of animal (e.g. bovine mastitis) or human protothecosis.  相似文献   

12.
13.
Phenotypic data for 71 genetic markers for members of five Caucasian kindreds were tested for linkage with the autosomal dominant mutations causing Charcot-Marie-Tooth (hereditary motor sensory) neuropathy type I, characterized by markedly reduced nerve conduction velocities. Lod score analysis gave no evidence of linkage to the closely linked chromosome 1 loci SPTA1-FY-F5-AT3 and APOA2. In contrast, these mutations were found to map closely (zeta = 10.828, theta = 0.0) to D17S58, an anonymous segment of DNA from 17p11.2-p11.1, and thus define the CMT1A locus. Segregation information data for an inferred recombinant offspring indicated that the CMT1A locus is probably proximal to MYH2, the locus encoding adult skeletal muscle myosin heavy polypeptide 2, which maps to 17p13. Analysis of the lod scores on a per kindred basis gave no evidence of genetic heterogeneity.  相似文献   

14.
Speed is a key area in our development of PCR assays for Bacillus anthracis. We believe that the strand specific detection of amplicons within 10 min is a realistic goal and that this will be achieved through fluorescent in-tube assays. We have used the Idaho LightCycler to study and develop candidate assays for B. anthracis. New strand specific fluorescent methods have been developed and a number of formats have been studied for speed and sensitivity. Internal controls have been developed as a method of improving our assay confidence. In this communication we will introduce the field of rapid PCR whilst discussing previous work in the areas described above, the development of our own rapid assay and a novel internal control system for B. anthracis. This work used PCR assays and hardware that are either commercially available, or have been previously described in open literature publications.  相似文献   

15.
We studied 169 members of 15 families with Charcot-Marie-Tooth neuropathy (CMT1) showing male-to-male transmission and slow motor-nerve conduction velocities. Four of these families were informative for linkage to apolipoprotein A2 on chromosome 1 (1q21-23) with an overall lod score of 2.45 at theta = .001. There was no statistical evidence of genetic heterogeneity.  相似文献   

16.
Three comparatively rapid methods for the extraction of DNA from fungal conidia and yeast cells in environmental (air, water and dust) samples were evaluated for use in real-time PCR (TaqMan™) analyses. A simple bead milling method was developed to provide sensitive, accurate and precise quantification of target organisms in air and water (tap and surface) samples. However, quantitative analysis of dust samples required further purification of the extracted DNA by a streamlined silica adsorption procedure.  相似文献   

17.
We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.  相似文献   

18.

Background

The erythrocyte binding antigen-175 (EBA-175) on Plasmodium falciparum merozoites mediates sialic acid dependent binding to glycophorin A on host erythrocytes and, therefore, plays a crucial role in cell invasion. Dimorphic allele segments have been found in its encoding gene with a 342 bp segment present in FCR-3 strains (F-segment) and a 423 bp segment in CAMP strains (C-segment). Possible associations of the dimorphism with severe malaria have been analysed in a case-control study in northern Ghana.

Methods

Blood samples of 289 children with severe malaria and 289 matched parasitaemic but asymptomatic controls were screened for eba- 175 F- and C-segments by nested polymerase chain reaction.

Results

In children with severe malaria, prevalences of F-, C- and mixed F-/C-segments were 70%, 19%, and 11%, respectively. The C-segment was found more frequently in severe malaria cases whereas mixed infections were more common in controls. Infection with strains harbouring the C-segment significantly increased the risk of fatal outcome.

Conclusion

The results show that the C-segment is associated with fatal outcome in children with severe malaria in northern Ghana, suggesting that it may contribute to the virulence of the parasite.  相似文献   

19.
Slow and unreliable infection in the greenhouse has been a barrier to research on Armillaria root disease. The existing infection assay takes 7–18 months for detectable infection, during which time the inoculum often dies, resulting in unequal challenge among plants. Because symptom expression and mortality are rare, presence or absence of infection, determined by culturing, is the only datum derived from the existing infection assay. This limits both routine comparisons of strain virulence and complex investigations of pathogenesis, neither of which have been done for Armillaria mellea. We tested a new infection assay, in which grape rootstocks growing in tissue culture medium are inoculated, and compared to rootstocks previously characterized from the existing infection assay as tolerant (Freedom) or susceptible (3309C). Culture media of 25 plants per rootstock was inoculated and five plants per rootstock were harvested 0, 2, 4, 6, and 8 weeks postinoculation; the experiment was completed twice. Confocal microscopy and quantitative PCR (Q-PCR) were used to quantify infection. Roots were treated with WGA-AlexaFluor488, hyphae and roots were scanned on green and red channels on a confocal microscope, and percent root colonization was quantified. A fungal gene (EF1α) was determined to have a single copy in A. mellea, and both EF1α and a single-copy grape gene (UFGT) were amplified by Q-PCR; fungal DNA: plant DNA served as a measure of fungal biomass. Armillaria was detected by culture, microscopy, and Q-PCR starting 2 weeks postinoculation from all inoculated plants, demonstrating that the new infection assay is rapid and plants do not escape infection. Our findings of higher percent root colonization (as measured by microscopy) of 3309C than Freedom at all harvests (P < 0.0001), consistently higher fungal biomass (as measured by Q-PCR) of 3309 than Freedom, and a significant positive correlation between percent root colonization and fungal biomass (P = 0.01) suggests that the quantitative methods of our new assay give similar results to the qualitative method of the existing infection assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号