首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computer-controlled headspace gas chromatograph was used to monitor the progress of ethanol production from both aerobic batch and anaerobic continuous fermentations. Using an automatic, electropneumatic sampling system, aliquots of fermentation headspace gas were injected directly onto the column for quantitative ethanol determinations every six minutes. A sample volume of 1 mL permitted liquid ethanol concentrations from 2 to 100 g/L to be measured with better than 3% standard deviation on five repeated injections. Provided fermenter liquid temperature and ionic strength were maintained constant, the signal-tohyphen;concentration ratio remained linear to 80 g/L ethanol. This quantitative gas chromatographic (GC) method is suitable for accurate, precise analysis of multiple solvent fermentations, and is limited only by the elution rate and separating capacity of the GC column.  相似文献   

2.
Summary An improved Chromatographic technique was developed to monitor the acetone/butanol fermentation on-line. Reduction in column length and diameter, use of a compromise oven temperature for multicomponent systems and smaller headspace gas aliquots permitted the completion of chromatograms within 3.5 minutes. Transient solvent concentrations were sensed within 2.5 minutes, and the chromatographic response was linear to 110 g/L ethanol and 20 g/L acetone and butanol concentrations.  相似文献   

3.
Aroma volatiles produced by Ceratocystis fimbriata on a defined liquid synthetic medium with and without the addition of leucine were identified by gas chromatography–mass spectrometry and quantified by gas chromatography-flame ionisation detection in the liquid medium as well as in the headspace. Volatiles were extracted from the liquid by simultaneous steam distillation–solvent extraction. Ceratocystis fimbriata produced a complex set of volatile intermediary metabolites, of which ethanol was the dominant compound (92–95% of total volatiles). Low molecular weight esters, alcohols, aldehydes, ketones, alkanes, and carboxylic acids were identified in the liquid broth. Alcohols and esters were the most abundant aroma volatiles. Leucine addition effected further growth and higher volatiles production. In the headspace, ethanol and ethyl acetate accounted for 92% of total volatiles over the synthetic medium and 89% when leucine was added. Aroma perception (fruity and banana) correlated closely with liquid and headspace total volatiles.  相似文献   

4.
Summary On-line estimation of ethanol concentration during a fermentation was carried out with a semiconductor gas sensor system using a semipermeable membrane to separate a gas stream from the fermentor broth. The system has the advantages of low-cost, in-situ steam sterilization and a relatively fast response time (1 min.). Good agreement was found between on-line and off-line measurements with fermentation of 25% glucose media using S.uvarum and Z.mobilis. However, significant deviations occurred with the fermentation of sugar-cane juice, grape-juice and molasses.  相似文献   

5.
To examine the effects of dihydroergotoxine (DHET) on peripheral blood ethanol levels of adult female mice, ethanol (2 g/kg) was administered orally, either alone or in combination with DHET (2, 4, or 8 mg/kg). Blood was drawn after the first day of drug administration (acute study) and again after 21 days (chronic study). Two additional groups of mice received a single dose of ethanol (2 g/kg) and DHET (2 mg/kg) 15 minutes apart, one group receiving ethanol first, the other DHET as the first dose. Blood samples (100μ1) were collected from the tail vein at 5, 15, 30, 60, 120 and 180 minutes after treatment. Samples were analyzed by headspace gas chromatography. Results indicate that (a) combining ethanol with DHET significantly reduced blood ethanol levels compared to administration of ethanol alone, (b) chronic conditions produced higher blood ethanol levels, and (c) administration of ethanol 15 minutes before DHET produced a 27% lowering of peripheral blood alcohol levels compared to the reverse order of administration. These data suggest that DHET may be useful for alleviating some of the symptoms associated with alcohol intoxication.  相似文献   

6.
Summary In the gas phase bioreactions, continuous production rate depends on the biocatalyst activity and complete dehydration causes the biocatalyst to lose most of its activity. To overcome these difficulties, a theoretical method is suggested along with the new design of biocatalyst. This will be applicable and helpful for the optimization of the gas phase continuous bioreaction.Nomenclature CA ethanol concentration [mol/mL] - CP acetaldehyde concentration [mol/mL] - XP acetaldehyde composition  相似文献   

7.
Large volume adherent cell culture is currently standardized on stacked plate cell growth products when microcarrier beads are not an optimal choice. HYPERStack vessels allow closed system scale up from the current stacked plate products and delivers >2.5X more cells in the same volumetric footprint. The HYPERStack vessels function via gas permeable material which allows gas exchange to occur, therefore eliminating the need for internal headspace within a vessel. The elimination of headspace allows the compartment where cell growth occurs to be minimized to reduce space, allowing more layers of cell growth surface area within the same volumetric footprint.For many applications such as cell therapy or vaccine production, a closed system is required for cell growth and harvesting. The HYPERStack vessel allows cell and reagent addition and removal via tubing from media bags or other methods.This protocol will explain the technology behind the gas permeable material used in the HYPERStack vessels, gas diffusion results to meet the metabolic needs of cells, closed system cell growth protocols, and various harvesting methods.Download video file.(70M, mov)  相似文献   

8.
Summary We have developed a bioreactor system for aerobic fermentation, using a new ceramic carrier APHROCELL which has a suitable shape for liquid and gas passage. In acetic acid fermentation byAcetobacter cells from ethanol, as a typical example of aerobic fermentation, a productivity of 17.25 g/l h was attained at continuous production of 23 g-acetic acid/l; at an acetic acid concentration around 53 g/l, the productivity was 6.4 g/l h. Thus a marketable vinegar can be obtained continuously by this bioreactor system. Because of the simplicity of the APHROCELL reactor, scale up should be relatively easy.  相似文献   

9.
Summary The effect of the periodic variation of the partial pressure of oxygen in the aeration gas on biomass concentrations, ethanol conversion, yield and productivity during continuous cultivations of the yeast Candida utilis in a multistage tower fermentor was studied. The results were compared with those obtained under aeration conditions with a constant PO 2 in the aeration gas. The results demonstrated that, with the optimum PO 2 in the aeration gas, the aeration procedure with the periodic variation of PO 2 in the gas phase permitted achievement of the same process parameters as those under constant PO 2. Using this new aeration procedure, the consumption of pure oxygen can be lowered by 55% to 60%. In addition, the significance of the induction effect of PO 2 on growth characteristics in the individual stages of the fermentor was proved.Symbols Ac Concentration of acetic acid (g/l) - i Number of stage - PO 2 Partial pressure of oxygen in the aeration gas (torr) - PR Productivity of the fermentor (g cell dwt/l/h) - SR Ethanol concentration in the feed (g/l) - S Ethanol concentration in the cultivation broth (g/l) - t Time of continuous cultivation (h) - X Cell dry weight concentration (g/l) - (YX/S)W Yield of cell dry weight from ethanol for the whole fermentor (g cell dwt/g ethanol) - Concentration interval in which parameters varied during the long-term cultivation at constant constant PO 2=263.5 torr in the aeration gas - 1 Concentration interval in which parameters varied during the long-term cultivation before the increase of PO 2 in the aeration gas - 2 Concentration interval in which parameters varied during the long-term cultivation immediately after the decrtease of PO 2 in the aeration gas - 3 Concentration interval in which parameters varied during the long-term cultivation about 24 h after the decrease of PO 2 in the aeration gas - 4 Concentration interval in which parameters varied during the long-term cultivation about 48 h after the decrease of PO 2 in the aeration gas  相似文献   

10.
Saccharomyces cerevisiae-based ethanol fermentations were conducted in batch culture, in a single stage continuous stirred tank reactor (CSTR), a multistage CSTR, and in a fermentor contaminated with Lactobacillus that corresponded to the first fermentor of the multistage CSTR system. Using a glucose concentration of 260 g l–1 in the medium, the highest ethanol concentration reached was in batch (116gl–1), followed by the multistage CSTR (106gl–1), and the single stage CSTR continuous production system (60gl–1). The highest ethanol productivity at this sugar concentration was achieved in the multistage CSTR system where a productivity of 12.7gl–1h–1 was seen. The other fermentation systems in comparison did not exceed an ethanol productivity of 3gl–1h–1. By performing a continuous ethanol fermentation in multiple stages (having a total equivalent working volume of the tested single stage), a 4-fold higher ethanol productivity was achieved as compared to either the single stage CSTR, or the batch fermentation.  相似文献   

11.
High fermenter (volumetric) ethanol productivities (80 g/lh–1) were attained in a simple single-stage continuous-stirred-tank-reactor (CSTR) employing a flocculent mutant of Zymomonas mobilis with a feed containing 100g/l glucose. Under these conditions a final ethanol concentration of 47.6 g/l was obtained, representing a maximum conversion efficiency of 97% of theoretical.Nomenclature SR = Medium glucose concentration (g/l)X Biomass concentration (g/l) - P Ethanol concentration (g/l) - VP Volumetric productivity (g ethanol/l/h) - Yp/s Product yield coefficient (g ethanol/g glucose consumed) - Qp Specific rate of ethanol formation (g ethanol/g cells/h) - D Dilution rate (h–1) - Dmax Maximum dilution rate: ie., highest dilution rate at which the effluent glucose concentration 4g/l (h–1)  相似文献   

12.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

13.
A headspace gas chromatographic method using a fused-silica capillary column Poraplot Q has been developed and validated for the detection and quantification of ethanol in urine. Under optimized conditions, ethanol was properly separated from acetaldehyde, acetone, isopropanol, methanol and n-propanol. Limits of detection (LODs) and quantification (LOQs) were 0.008 and 0.010 g/l, respectively. The precision studies within-run and between-run, using spiked urine samples (0.08, 0.8 and 2.0 g/l) showed maximum coefficients of variation 5.9 and 6.5%, respectively. Results of ethanol recovery varied from 91.6±0.8 to 103.3±1.8% over the concentration range from 0.01 to 3.20 g/l. The method was appropriate for the detection of ethanol in urine samples. This matrix can be used for monitoring alcohol abuse in the workplace and used in alcohol rehabilitation programs.  相似文献   

14.

Background

Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source.

Results

Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility.

Conclusion

High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
  相似文献   

15.

Background

Sugarcane bagasse (SCB) is one of the most promising lignocellulosic biomasses for use in the production of biofuels. However, bioethanol production from pure SCB fermentation is still limited by its high process cost and low fermentation efficiency. Sugarcane molasses, as a carbohydrate-rich biomass, can provide fermentable sugars for ethanol production. Herein, to reduce high processing costs, molasses was integrated into lignocellulosic ethanol production in batch modes to improve the fermentation system and to boost the final ethanol concentration and yield.

Results

The co-fermentation of pretreated SCB and molasses at ratios of 3:1 (mixture A) and 1:1 (mixture B) were conducted at solid loadings of 12% to 32%, and the fermentation of pretreated SCB alone at the same solid loading was also compared. At a solid loading of 32%, the ethanol concentrations of 64.10 g/L, 74.69 g/L, and 75.64 g/L were obtained from pure SCB, mixture A, and mixture B, respectively. To further boost the ethanol concentration, the fermentation of mixture B (1:1), with higher solid loading from 36 to 48%, was also implemented. The highest ethanol concentration of 94.20 g/L was generated at a high solid loading of 44%, with an ethanol yield of 72.37%. In addition, after evaporation, the wastewater could be converted to biogas by anaerobic digestion. The final methane production of 312.14 mL/g volatile solids (VS) was obtained, and the final chemical oxygen demand removal and VS degradation efficiency was 85.9% and 95.9%, respectively.

Conclusions

Molasses could provide a good environment for the growth of yeast and inoculum. Integrating sugarcane molasses into sequential cellulosic biofuel production could improve the utilization of biomass resources.
  相似文献   

16.
Summary Treatment of fixed frozen sections of rat kidney with 40–60% ethanol for 2 minutes at 0° C improved the cytologic localisation of-glucuronidase in naphthol AS-BI post-coupling technique. Concentration of ethanol, duration of treatment and temperature are critical. Higher concentrations of ethanol, longer treatment and higher temperatures deteriorate the normal localisation of the enzyme. Such pretreatment can he introduced as a step in the original histochemical technique.  相似文献   

17.
We have established an ultra-sensitive method for determination of ethanol in whole blood by headspace capillary gas chromatography (GC) with cryogenic oven trapping. After heating a blood sample containing ethanol and isobutyl alcohol (internal standard, IS) in a 7.0-ml vial at 55°C for 15 min, 5 ml of the headspace vapor was drawn into a glass syringe and injected into a GC port. All vapor was introduced into an Rtx-BAC2 wide-bore capillary column in the splitless mode at −60°C oven temperature to trap entire analytes, and then the oven temperature was programmed up to 240°C for GC measurements with flame ionization detection. The present method gave sharp peaks of ethanol and IS, and low background noise for whole blood samples. The mean partition into the gaseous phase for ethanol and IS was 3.06±0.733 and 8.33±2.19%, respectively. The calibration curves showed linearity in the range 0.02–5.0 μg/ml whole blood. The detection limit was estimated to be 0.01 μg/ml. The coefficients of intra-day and inter-day variation for spiked ethanol were 8.72 and 9.47%, respectively. Because of the extremely high sensitivity, we could measure low levels of endogenous ethanol in whole blood of subjects without drinking. The concentration of endogenous ethanol measured for 10 subjects under uncontrolled conditions varied from 0 to 0.377 μg/ml (mean, 0.180 μg/ml). Data on the diurnal changes of endogenous ethanol in whole blood of five subjects under strict food control are also presented; they are in accordance with the idea that endogenous blood ethanol is of enteric bacterial origin.  相似文献   

18.
Summary Ethanol was produced by a strain ofPichia stipitis adapted to an inhibitory acid wood hydrolysate ofPinus radiata. The best ethanol productivity for batch cultures was 0.21 g/l h at 0.7% ethanol. Varying culture conditions increased ethanol concentration to 0.76%, however the productivity decreased to 0.18 g/l h. A decrease in ethanol concentration in the culture fluid was noted late in the batch which suggested ethanol catabolism. Values of kinetic parameters (K m,K s, max, andV max) were evaluated for this system. The use of calcium alginate immobilized cells in a continuous-flow stirred tank reactor lead to enhanced fermentative performance, namely a maximum productivity of 0.27 g/l h and 1.13% ethanol yield. The immobilized cells in continuous flow reactors represent an attractive option for fermenting sugars released by sulphuric acid hydrolysis ofP. radiata wood.  相似文献   

19.
Conversion of paper sludge to ethanol was investigated with the objective of operating under conditions approaching those expected of an industrial process. Major components of the bleached Kraft sludge studied were glucan (62 wt.%, dry basis), xylan (11.5%), and minerals (17%). Complete recovery of glucose during compositional analysis required two acid hydrolysis treatments rather than one. To avoid the difficulty of mixing unreacted paper sludge, a semicontinuous solids-fed laboratory bioreactor system was developed. The system featured feeding at 12-h intervals, a residence time of 4 days, and cellulase loading of 15 to 20 FPU/g cellulose. Sludge was converted to ethanol using simultaneous saccharification and fermentation (SSF) featuring a -glucosidase-supplemented commercial cellulase preparation and glucose fermentation by Saccharomyces cerevisiea. SSF was carried out for a period of 4 months in a first-generation system, resulting in an average ethanol concentration of 35 g/L. However, steady state was not achieved and operational difficulties were encountered. These difficulties were avoided in a retrofitted design that was operated for two 1-month runs, achieving steady state with good material balance closure. Run 1 with the retrofitted reactor produced 50 g/L ethanol at a cellulose conversion of 74%. Run 2 produced 42 g/L ethanol at a conversion of 92%. For run 2, the ethanol yield was 0.466 g ethanol/g glucose equivalent fermented and >94% of the xylan fed to the reactor was solubilized to a mixture of xylan oligomers and xylose.  相似文献   

20.
Summary When cell suspensions of Saccharomyces cerevisiae NRRL-Y132 and Kluyveromyces marxianus IGC-2771 were incubated in the presence of different concentrations of ethanol, the final stable pH values (pH f ) reached in these suspensions increased with increasing ethanol concentration, indicating that ethanol enhanced passive proton diffusion into the cells. The plots of pH f as a function of ethanol concentration were linear but biphasic, displaying different slopes below and above the transition ethanol concentrations. When S. cerevisiae NRRL-Y132 and K. marxianus IGC-2771 were grown in the presence of different concentrations of ethanol, the specific growth rate () similarly depended upon ethanol concentration in a linear, biphasic way. Plots of at each ethanol concentration against pH f reached in cell suspensions at that ethanol concentration were linear and monophasic for S. cerevisiae NRRL-Y132 but biphasic for K. marxianus IGC-2771. Ethanol inhibition of growth and enhancement of proton diffusion are therefore correlated in these yeasts. Whereas ethanol inhibition of growth and enhancement of transmembrane proton diffusion were affected to the same degree by ethanol below and above the transition ethanol concentration in S. cerevisiae NRRL-Y132, these two parameters of ethanol inhibition were affected to different degrees below and above the transition in K. marxianus IGC-2771 as indicated by the inflection point in the plot of vs pH f . Attempts to extent these findings to other yeasts showed that the correlation between the effects of ethanol on pH f and is not a universal phenomenon among yeasts.Offprint requests to: S. G. Kilian  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号