首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We examined the role of zebrafish (Danio rerio) Jak2a, a homolog of mammalian Jak2, in the developing embryo by injecting in vitro synthesized Jak2a shRNA into zebrafish zygotes. Blood circulation was suppressed in Jak2a shRNA-injected embryos from 24 hours post fertilization (hpf) and all embryos died with enlarged pericardium, shortened body lengths, and defects in some vasculature within 8 days post fertilization. O-dianisidine staining of red blood cells revealed normal blood island formation with no circulating red blood cells. As in Jak2−/− transgenic mice, expression of definitive Ba1 globin was significantly reduced in Jak2a knockdown embryos at 36 hpf, whereas expression of other hematopoietic markers, primitive be1 globin, gata-1, and scl, were unaffected. More importantly, blood vessel formation was disturbed in Jak2a knockdown embryos as revealed by alkaline phosphatase staining at 72 hpf. Thus, our data indicate that zebrafish Jak2a is important in both definitive hematopoiesis and blood vessel formation.  相似文献   

3.
4.
5.
6.
7.
8.
CBP and its homologue p300 play significant roles in cell differentiation, cell cycle, and anti-oncogenesis. We demonstrated that beta-catenin, recently known as a potent oncogene, and CBP/p300 are associated through its CH3 region, which is a primary target of adenoviral oncoprotein E1A and various nuclear proteins, such as p53, cyclin E, and AP-1, and both are colocalized in the nuclear bodies. CBP/p300 potentiated Lef-mediated transactivation of beta-catenin, and E1A, a potent inhibitor of CBP/p300, repressed its transactivation. Furthermore, overexpression of stable beta-catenin mutant competitively suppressed the p53-dependent pathway. These may be a key mechanism of beta-catenin involved in oncogenic events underlying disruption of tumor suppressor function through CBP/p300.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Rui Y  Xu Z  Lin S  Li Q  Rui H  Luo W  Zhou HM  Cheung PY  Wu Z  Ye Z  Li P  Han J  Lin SC 《The EMBO journal》2004,23(23):4583-4594
  相似文献   

19.
20.
Cytokinesis in Saccharomyces cerevisiae occurs by the concerted action of the actomyosin system and septum formation. Here we report on the roles of HOF1, BNI1, and BNR1 in cytokinesis, focusing on Hof1p. Deletion of HOF1 causes a temperature-sensitive defect in septum formation. A Hof1p ring forms on the mother side of the bud neck in G2/M, followed by the formation of a daughter-side ring. Around telophase, Hof1p is phosphorylated and the double rings merge into a single ring that contracts slightly and may colocalize with the actomyosin structure. Upon septum formation, Hof1p splits into two rings, disappearing upon cell separation. Hof1p localization is dependent on septins but not Myo1p. Synthetic lethality suggests that Bni1p and Myo1p belong to one functional pathway, whereas Hof1p and Bnr1p belong to another. These results suggest that Hof1p may function as an adapter linking the primary septum synthesis machinery to the actomyosin system. The formation of the actomyosin ring is not affected by bni1Delta, hof1Delta, or bnr1Delta. However, Myo1p contraction is affected by bni1Delta but not by hof1Delta or bnr1Delta. In bni1Delta cells that lack the actomyosin contraction, septum formation is often slow and asymmetric, suggesting that actomyosin contraction may provide directionality for efficient septum formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号