首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Size-dependent positioning of human chromosomes in interphase nuclei   总被引:15,自引:0,他引:15       下载免费PDF全文
By using a fluorescence in situ hybridization technique we revealed that for nine different q-arm telomere markers the positioning of chromosomes in human G(1) interphase nuclei was chromosome size-dependent. The q-arm telomeres of large chromosomes are more peripherally located than telomeres on small chromosomes. This highly organized arrangement of chromatin within the human nucleus was discovered by determining the x and y coordinates of the hybridization sites and calculating the root-mean-square radial distance to the nuclear centers in human fibroblasts. We demonstrate here that global organization within the G(1) interphase nucleus is affected by one of the most fundamental physical quantities-chromosome size or mass-and propose two biophysical models, a volume exclusion model and a mitotic preset model, to explain our finding.  相似文献   

2.
We examined the effect of cell cycle progression on various levels of chromosome organization in Drosophila. Using bromodeoxyuridine incorporation and DNA quantitation in combination with fluorescence in situ hybridization, we detected gross chromosomal movements in diploid interphase nuclei of larvae. At the onset of S-phase, an increased separation was seen between proximal and distal positions of a long chromsome arm. Progression through S-phase disrupted heterochromatic associations that have been correlated with gene silencing. Additionally, we have found that large-scale G1 nuclear architecture is continually dynamic. Nuclei display a Rabl configuration for only ∼2 h after mitosis, and with further progression of G1-phase can establish heterochromatic interactions between distal and proximal parts of the chromosome arm. We also find evidence that somatic pairing of homologous chromosomes is disrupted during S-phase more rapidly for a euchromatic than for a heterochromatic region. Such interphase chromosome movements suggest a possible mechanism that links gene regulation via nuclear positioning to the cell cycle: delayed maturation of heterochromatin during G1-phase delays establishment of a silent chromatin state.  相似文献   

3.
4.
5.
Frank  Steven A 《BMC biology》2004,2(1):1-8

Background

The observation of multiple genetic markers in situ by optical microscopy and their relevance to the study of three-dimensional (3D) chromosomal organization in the nucleus have been greatly developed in the last decade. These methods are important in cancer research because cancer is characterized by multiple alterations that affect the modulation of gene expression and the stability of the genome. It is, therefore, essential to analyze the 3D genome organization of the interphase nucleus in both normal and cancer cells.

Results

We describe a novel approach to study the distribution of all telomeres inside the nucleus of mammalian cells throughout the cell cycle. It is based on 3D telomere fluorescence in situ hybridization followed by quantitative analysis that determines the telomeres' distribution in the nucleus throughout the cell cycle. This method enables us to determine, for the first time, that telomere organization is cell-cycle dependent, with assembly of telomeres into a telomeric disk in the G2 phase. In tumor cells, the 3D telomere organization is distorted and aggregates are formed.

Conclusions

The results emphasize a non-random and dynamic 3D nuclear telomeric organization and its importance to genomic stability. Based on our findings, it appears possible to examine telomeric aggregates suggestive of genomic instability in individual interphase nuclei and tissues without the need to examine metaphases. Such new avenues of monitoring genomic instability could potentially impact on cancer biology, genetics, diagnostic innovations and surveillance of treatment response in medicine.  相似文献   

6.
7.
Methods based on flow cytometry and sorting, autoradiography, and cloning were used to evaluate the potential for the enumeration of 6-thioguanine-resistant human peripheral blood lymphocytes assumed to be deficient with respect to the enzyme hypoxanthine-guanine-phosphoribosyl-transferase. Flow cytometric sorting of proliferating cells in the late S- and the G2-stages by means of DNA content, as measured by propidium iodide fluorescence, enabled an enrichment of variant cells to about 99%. The main source of false events was contaminating doublets of G0/G1 cells appearing in the sorting region. Doublet discrimination measured as the difference between pulse height and area (Ortho-50) accomplished no further improvement. A combination of propidium iodide fluorescence and bromodeoxyuridine incorporation, measured by fluorescent anti-bromodeoxyuridine-DNA antibodies, allowed flow cytometric enrichment to about 99.99% of variant cells. By sorting of 3H-thymidine-labeled cell nuclei from the late S- and the G2-phases and subsequent autoradiographic evaluation, partly resistant variants could be discriminated; variant frequencies of the same magnitude as for the cell cloning methods were obtained.  相似文献   

8.
Cells in mitosis can be flow cytometrically discriminated from G1, S, and G2 cells by analysis of a nuclear suspension prepared with nonionic detergent, fixed with formaldehyde, and stained with mithramycin, propidium iodide, or ethidium bromide. With these DNA-fluorochromes, the fluorescence is quenched by formaldehyde less in mitotic nuclei than in interphase nuclei. Mitotic nuclei have a 20-40% increased mithramycin fluorescence and 30-60% decreased light scatter in comparison to those of G2 nuclei. There is a high correlation (r = 0.95; P less than 0.001) between microscope counts of mitotic figures in smear preparations of the initial cell suspension and the flow cytometrically estimated fraction of nuclei with increased mithramycin fluorescence. Flow sorting (FACS) demonstrates that the mitotic nuclei are confined to the peak of increased mithramycin fluorescence and decreased light scatter. The method has been applied to cultures of Yoshida ascites tumor cells, JB-1 reticulosarcoma cells, and PHA-stimulated human lymphocytes, incubated in the presence or absence of vinblastine for mitotic arrest. In a heteroploid mixture of fixed Yoshida (near-diploid) and JB-1 (hypotetraploid) nuclei, the mitotic fractions of the two cell lines could be estimated separately when analyzed with mithramycin fluorescence versus light scatter or with mithramycin fluorescence versus propidium iodide fluorescence.  相似文献   

9.
Summary Fluorescence hybridization to interphase nuclei in liquid suspension allows quantification of chromosome-specific DNA sequences using flow cytometry and the analysis of the three-dimensional positions of these sequences in the nucleus using fluorescence microscopy. The three-dimensional structure of nuclei is substantially intact after fluorescence hybridization in suspension, permitting the study of nuclear organization by optical sectioning. Images of the distribution of probe and total DNA fluroescence within a nucleus are collected at several focal planes by quantitative fluorescence microscopy and image processing. These images can be used to reconstruct the three-dimensional organization of the target sequences in the nucleus. We demonstrate here the simultaneous localization of two human chromosomes in an interphase nucleus using two probe labeling schemes (AAF and biotin). Alternatively, dual-beam flow cytometry is used to quantify the amount of bound probe and total DNA content. We demonstrate that the intensity of probe-linked fluorescence following hybridization is proportional to the amount of target DNA over a 100-fold range in target content. This was shown using four human/hamster somatic cell hybrids carrying different numbers of human chromosomes and diploid and tetraploid human cell lines hybridized with human genomic DNA. We also show that populations of male, female, and XYY nuclei can be discriminated by measuring their fluores-cence intensity following hybridization with a Y-chromosome-specific repetitive probe. The delay in the increase in Y-specific fluorescence until the end of S-phase is consistent with the results recorded in previous studies indicating that these sequences are among the last to replicate in the genome. A chromosome-17-specific repetitive probe is used to demonstrate that target sequences as small as one megabase (Mb) can be detected using fluorescence hybridization and flow cytometry.  相似文献   

10.
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.  相似文献   

11.

Background  

In cancer cells the three-dimensional (3D) telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH) reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H) to diagnostic multinuclear Reed-Sternberg (RS) cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei".  相似文献   

12.
Several subcompartments of the cell cycle in addition to the G1-, S-, and G2-phases usually observed were identified by simultaneous flow cytometric measurements of ethidium bromide fluorescence and side scatter intensity of cell nuclei. Metaphase cells and very early G1-phase cells (G1A) with low side scatter intensities were discriminated from interphase cells with high side scatter intensities. The reason for the various side scatter intensities was found to be the different structure of metaphase cells and early G1-phase cells due to chromatin condensation as shown by sorting of the respective cell nuclei. The G1A-phase could further be subdivided into two compartments with very low side scatter (G1A1) and intermediate side scatter (G1A2) intensities. Using partially synchronized cells the duration of these subcompartments of the G1-phase could be estimated. The durations of G1A1- and G1A2-phases were found to be about 10 min and 20 min, respectively, compared to the total duration of the G1-phase of about 3 h. Additional flow cytometric measurements of side scatter intensities of cell nuclei provide therefore further information on subcompartments of the G1- and G2/M-phases.  相似文献   

13.
Heat denaturation of DNA in situ, in unbroken cells, was studied in relation to the cell cycle. DNA in metaphase cells denatured at lower temperatures (8 degrees-10 degrees C lower) than DNA in interphase cells. Among interphase cells, small differences between G1, S, and G2 cells were observed at temperatures above 90 degrees C. The difference between metaphase and interphase cells increased after short pretreatment with formaldehyde, decreased when cells were heated in the presence of 1 mM MgCl2, and was abolished by cell pretreatment with 0.5 N HCl. The results suggest that acid-soluble constituents of chromatin confer local stability to DNA and that the degree of stabilization is lower in metaphase chromosomes than in interphase nuclei. These in situ results remain in contrast to the published data showing no difference in DNA denaturation in chromatin isolated from interphase and metaphase cells. It is likely that factors exist which influence the stability of DNA in situ are associated with the super-structural organization of chromatin in intact nuclei and which are lost during chromatin isolation and solubilization. Since DNA denaturation is assayed after cell cooling, there is also a possibility that the extent of denatured DNA may be influenced by some factors that control strand separation and DNA reassociation. The different stainability of interphase vs. metaphase cells, based on the difference in stability of DNA, offers a method for determining mitotic indices by flow cytofluorometry, and a possible new parameter for sorting cells in metaphase.  相似文献   

14.
Telomeres are specialized structures at the ends of the chromosomes that, with the help of proteins--such as the telomere repeat-binding factor TRF2 -, form protective caps which are essential for chromosomal integrity. Investigating the structure and three-dimensional (3D) distribution of the telomeres and TRF2 in the nucleus, we now show that the telomeres of the immortal HaCaT keratinocytes are distributed in distinct non-overlapping territories within the inner third of the nuclear space in interphase cells, while they extend more widely during mitosis. TRF2 is present at the telomeres at all cell cycle phases. During mitosis additional TRF2 protein concentrates all around the chromosomes. This change in staining pattern correlates with a significant increase in TRF2 protein at the S/G2 transition as seen in Western blots of synchronized cells and is paralleled by a cell cycle-dependent regulation of TRF2 mRNA, arguing for a specific role of TRF2 during mitosis. The distinct territorial localization of telomeres is abrogated in a HaCaT variant that constitutively expresses c-Myc--a protein known to contribute to genomic instability. These cells are characterized by overlapping telomere territories, telomeric aggregates (TAs), that are accompanied by an overall irregular telomere distribution and a reduced level in TRF2 protein. These TAs which are readily detectable in interphase nuclei, are similarly present in mitotic cells, including cells in telophase. Thus, we propose that TAs, which subsequently also cluster their respective chromosomes, contribute to genomic instability by forcing an abnormal chromosome segregation during mitosis.  相似文献   

15.
Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.  相似文献   

16.
BACKGROUND: Detection of fluorescent probes by fluorescence in situ hybridization in cells with preserved three-dimensional nuclear structures (3D-FISH) is useful for studying the organization of chromatin and localization of genes in interphase nuclei. Fast and reliable measurements of the relative positioning of fluorescent spots specific to subchromosomal regions and genes would improve understanding of cell structure and function. METHODS: 3D-FISH protocol, confocal microscopy, and digital image analysis were used. RESULTS: New software (Smart 3D-FISH) has been developed to automate the process of spot segmentation and distance measurements in images from 3D-FISH experiments. It can handle any number of fluorescent spots and incorporate images of 4',6-diamino-2-phenylindole counterstained nuclei to measure the relative positioning of spot loci in the nucleus and inter-spot distance. Results from a pilot experiment using Smart 3D-FISH on ENL, MLL, and AF4 genes in two lymphoblastic cell lines were satisfactory and consistent with data published in the literature. CONCLUSION: Smart 3D-FISH should greatly facilitate image processing and analysis of 3D-FISH images by providing a useful tool to overcome the laborious task of image segmentation based on user-defined parameters and decrease subjectivity in data analysis. It is available as a set of plugins for ImageJ software.  相似文献   

17.
Telomeres of mammalian chromosomes are composed of long tandem repeats (TTAGGG)n which bind in a sequence-specific manner two proteins-TRF1 and TRF2. In human somatic cells both proteins are mostly associated with telomeres and TRF1 overexpression resulting in telomere shortening. However, chromosomes of some mammalian species, e.g., Chinese hamster, have large interstitial blocks of (TTAGGG)n sequence (IBTs) and the blocks are involved in radiation-induced chromosome instability. In normal somatic cells of these species chromosomes are stable, indicating that the IBTs are protected from unequal homologous recombination. In this study we expressed V5-epitope or green fluorescent protein (GFP)-tagged human TRF1 in different lines of mammalian cells and analyzed distribution of the fusion proteins in interphase nucleus. As expected, transient transfection of human (A549) or African green monkey cells with GFP-N-TRF1 or TRF1-C-V5 plasmids resulted in the appearance in interphase nuclei of multiple faint nuclear dots containing GFP or V5 epitope which we believe to represent telomeres. Transfection of immortalized Chinese hamster ovary (CHO) cell line K1 which have extremely short telomeres with GFP-N-TRF1 plasmid leads to the appearance in interphase nuclei of large GFP bodies corresponding in number to the number of IBTs in these cells. Simultaneous visualization of GFP and IBTs in interphase nuclei of transfected CHO-K1 cells showed colocalization of both signals indicating that expressed TRF1 actually associates with IBTs. These results suggest that TRF1 may serve as general sensor of (TTAGGG)n repeats controlling not only telomeres but also interstitial (TTAGGG)n sequences.  相似文献   

18.
We present observations on the fine structure and the division process of the nucleus in the protist Tritrichomonas foetus, parasite of the urogenital tract of cattle. The nucleus was followed by immunofluorescence and electron microscopy during interphase and mitosis. Conventional karyotyping coupled to image processing and bright field Panotic staining were used to follow nucleus modifications, chromosome number and condensation pattern along the whole cell cycle. Confocal laser scanning microscopy (CLSM) using DNA fluorescent probes, followed by image processing in the SURF-Driver program, produced three-dimensional reconstruction data of the mitotic nucleus under each phase of the division process. Immunocytochemistry in thin-sections revealed the chromosome spatial arrangement after bromodeoxyuridine incorporation and immunogold labeling using anti-DNA monoclonal antibodies. Our results indicate that: (1) the nucleus assumes different size and shapes along mitosis: it appears oval in interphase, becoming lobed or concave in prophase, then undergoing torsion and constriction, displaying an 'S' shape (metaphase). Next, it becomes elongated and it is finally separated in two nuclei at the transition of anaphase to telophase; (2) T. foetus nucleus harbors five chromosomes; (3) chromosomes become condensed in a pre-mitotic phase; (4) the nucleolus persists during the mitosis.  相似文献   

19.
20.
We employed microscopic intensity-based fluorescence resonance energy transfer (FRET) images with correction by donor and acceptor concentrations to obtain unbiased maps of spatial distribution of the AT- and GC-rich DNA regions in nuclei. FRET images of 137 bovine aortic endothelial cells stained by the AT-specific donor Hoechst 33258 and the GC-specific acceptor 7-aminoactinomycin D were acquired and corrected for the donor and acceptor concentrations by the Gordon's method based on the three fluorescence filter sets. The corrected FRET images were quantitatively analyzed by texture analysis to correlate the spatial distribution of the AT- and GC-rich DNA regions with different phases of the cell cycle. Both visual observation and quantitative texture analysis revealed an increased number and size of the low FRET efficiency centers for cells in the G(2)/M-phases, compared to the G(1)-phase cells. We have detected cell cycle-dependent changes of the spatial organization and separation of the AT- and GC-rich DNA regions. Using the corrected FRET (cFRET) technique, we were able to detect early DNA separation stages in late interphase nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号