首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using UV-induced cross-linking between proteins and DNA, the contacts between single-stranded DNA-binding proteins (SSB proteins) and chromatin DNA have been demonstrated. Ehrlich ascites tumour DNA was labeled in vivo by inoculation of tumour-bearing mice with 3H-thymidine. The cells were irradiated with the UV light dose of 3000 J/m2, destroyed in a Triton X-100-containing hypotonic medium, and separated by centrifugation into the extrachromatin fraction and chromatin. Chromatin DNA was digested with DNAase 1, and the chromatin proteins were extracted with 2 M NaCl-polyethyleneglycol. SSB proteins from the extrachromatin fraction and chromatin were purified. Only SSB proteins from UV-irradiated cell chromatin appeared to possess a high specific radioactivity which exceeded 7.5-fold that of non-irradiated cells. There were no differences between chromatin SSB proteins in control and irradiated cells as could be evidenced from SDS electrophoresis data. It is assumed that in irradiated cells SSB proteins of DNA-digested chromatin are covalently cross-linked with DNA fragments.  相似文献   

2.
A procedure is described for the purification of nuclei and identification of chromatin proteins in transformed epithelial cell lines from mammalian bladder and salivary gland. Nuclear purification was performed by homogenization, in hypotonic buffer containing polyamines to stabilize the nuclear structure, followed by 0.1–0.2% Triton X-100 washing and centrifugation through 2.2 m sucrose. Chromatin was liberated from nuclei by freeze-thawing in hypotonic buffer and the chromatin proteins were extracted with 7 m urea/3 m NaCl. The chromatin proteins were identified using NEPHGE two-dimensional electrophoresis and fluorographic autoradiography. This procedure enabled detection of histones and a range of basic nonhistone chromatin proteins, following cell culture in the presence of low levels of l-(4,5-3H)leucine.  相似文献   

3.
4.
5.
6.
7.
Nuclei from terminally differentiated Xenopus erythrocytes lack essential components of the prereplication complex, including the origin recognition complex (ORC) proteins XORC1 and XORC2. In Xenopus egg extract, these proteins are able to bind erythrocyte chromatin from permeable nuclei, but not from intact nuclei, even though they are able to cross an intact nuclear envelope. In this report we use both permeable and intact erythrocyte nuclei to investigate the role of cyclin-dependent kinase activity in modulating the binding of XORC2 to chromatin. We find that elevating the level of cyclin A-dependent kinase in egg extract prevents the binding of XORC2 to chromatin from permeable nuclei and that kinase inhibition reverses this effect. We also observe a nuclear transport-dependent accumulation of H1 kinase activity within intact nuclei incubated in the extract. However, inhibiting this kinase activity does not facilitate the binding of XORC2 to chromatin, suggesting that other molecules and/or mechanisms exist to prevent association of XORC proteins with replication origins within intact nuclei from terminally differentiated cells.  相似文献   

8.
Complexing of histone proteins, from WI-38 cells with pure DNA from WI-38 cells, causes a marked decrease in the amplitude of the positive ellipticity band and a red shift in circular dichroism spectra in the 250–300 nm region. Total nonhistone chromosomal proteins from WI-38 cells (without histones) cause an analogous effect, but of significantly reduced magnitude. However, the two effects are not additive, because, when DNA is complexed with both histones and nonhistones, the amplitude of the positive ellipticity band has an intermediate value, between the histone-DNA complex and the nonhistone-DNA complex. Removal of certain nonhistone proteins from chromatin of WI-38 cells, by extraction with 0.25–0.35 m NaCl, causes a decrease in the positive circular dichroism band in the 250–300 nm region. Removal of histones and other nonhistone proteins from chromatin by extraction with 0.75 and 1.5 m NaCl causes a strong increase in positive ellipticity. This suggests the existence of modest but definite effects of nonhistone proteins in determining DNA conformation in native chromatin. Taken as a whole, nonhistone chromosomal proteins have a weaker but analogous effect to that of histones, while the nonhistone proteins extractable with 0.25–0.35 m NaCl have an opposite effect.  相似文献   

9.
10.
The antisera specific for dehistonized Hela cell chromatin were obtained by injecting rabbits or goats. Treatment of chromatin with cis-DDP crosslinked the active proteins to DNA thus preventing dissociation of the proteins in a high salt environment.Immunochemical staining of electrophoretically separated chromosomal proteins transferred to nitrocellulose sheets revealed that cis-DDP among others crosslinked the protein with m.w. of about 81 000. This protein is the only major protein antigen presented in several human tumors and absent in normal human tissues.  相似文献   

11.
12.
The centromere is the locus that directs chromosomal inheritance at cell division. While centromeres in diverse eukaryotes are commonly found at sites of repetitive DNA, their location is epigenetically specified. The histone H3 variant CENP-A is the prime candidate for epigenetically marking the centromere, and recent work has uncovered several additional proteins that play key roles in centromere assembly and maintenance. We describe advances in the identification and characterization of proteins that form the centromere, and focus on recent findings that have advanced our understanding of the assembly of functional centromeric chromatin. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.  相似文献   

13.
A method is described for storage of chromatin and cytoplasm for electrophoresis. Chromatin was prepared from isolated nuclei, dialyzed against 10?4m phenylmethylsulfonyl fluoride and 0.002 m EDTA, and stored as a lyophilized powder for a period of 4 weeks. Polyacrylamide slab-gel electrophoresis of chromatin treated in this manner showed improved resolution and considerably less degradation than chromatin samples solubilized in sodium dodecyl sulfate and frozen at ?20°C in liquid N2 or left at room temperature. Electrophoresis of stored cytoplasmic proteins gave similar results. This method allows convenient concentration of the sample. It also avoids the use of detergents and gives flexibility in the choice of buffers for later electrophoresis.  相似文献   

14.
15.
16.
By treatment with tRNA in the presence of 1 mM MgCl2, a chromatin preparation was obtained containing all five major histone fractions but lacking a considerable portion of non-histone proteins. This chromatin preparation as well as chromatin extracted with 0.6 M NaCl (depleted of H1 histone and some non-histone proteins) were characterized in respect of solubility and chromatin DNA accessibility. Both samples possessed practically the same solubility in the presence of 0.15 M NaCl and 1 mM MgCl2. The solubility of tRNA-treated chromatin in 5 and 10 mM MgCl2 was higher than that of salt-extracted chromation. The accessibility of the DNA of these chromatin preparations was tested with DNA-dependent RNA polymerase of Escherichia coli as a probe, using procedure that permits measurement of binding site frequency. Both tRNA-treated and salt-extracted chromatin contained as many as 33% and untreated chromatin as few as 4% of the number of binding sites found on protein-free DNA. These results demonstrate that at least in part the non-histone proteins are responsible for salt-induced insolubility and low DNA accessibility of chromatin, thus revealing the importance of non-histone proteins in the maintenance of an overall chromatin structure.  相似文献   

17.
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.  相似文献   

18.
Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic. Proteins were then assigned to one of 12 different clusters on the basis of their pattern of chromatin association. Each cluster contained functional groups of proteins involved in different nuclear processes related to progression through interphase. We also blocked DNA replication by inhibiting either replication licensing or S phase CDK activity. This revealed an unexpectedly broad system-wide effect on the chromatin proteome, indicating that the response to replication inhibition extends to many other functional modules in addition to the replication machinery. Several proteins that respond to replication inhibition (including nuclear pore proteins) coprecipitated with the Mcm2-7 licensing complex on chromatin, suggesting that Mcm2-7 play a central role in coordinating nuclear structure with DNA replication.  相似文献   

19.
20.
BACKGROUND AND AIMS: Methyl CpG-binding proteins are considered to play critical roles in epigenetic control of gene expression by recognizing and interacting with 5-methylcytosine (m(5)C) in eukaryotes. However, among 13 corresponding genes in Arabidopsis thaliana, designated as featuring a methyl-binding domain (MBD), only four have so far been shown actually to bind to m(5)C. One example, AtMBD5, was selected here to screen for interacting proteins. METHODS: Yeast two-hybrid assays were used for screening, and physical interaction was confirmed by pull-down and bimolecular fluorescence complementation (BiFC) assays. Cellular localization was analysed by fluorescence-tagged fusion proteins using tobacco (Nicotiana tabacum) cultured bright yellow 2 cells. KEY RESULTS: A gene finally identified was found to encode AtRAN3, a protein that belongs to the Ran GTPase family, which plays a critical role in nucleocytoplasmic transport and spindle bipolarization during cell division. AtMBD5 and AtRAN3 were clearly shown to interact in the nucleus by BiFC. On co-expression of AtMBD5-cyan fluorescence protein and yellow fluorescence protein-AtRAN3 in tobacco cells, both localized to the nucleus in the resting stage, migrating to the cytoplasm, primarily around chromatin, during mitosis, particularly at metaphase. CONCLUSIONS: These results suggest that AtMBD5 becomes localized to the vicinity of chromosomes with the aid of AtRAN3 during cell division, and may play an important role not only in maintenance of chromatin structures by binding to m(5)C, but also in progress through mitosis by detaching from m(5)C. The present findings also shed light on the physiological function of Ran GTPases, direct target proteins of which have not thus far been well defined, suggesting their key role in chromatin movements in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号