首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Qin G  Gu H  Zhao Y  Ma Z  Shi G  Yang Y  Pichersky E  Chen H  Liu M  Chen Z  Qu LJ 《The Plant cell》2005,17(10):2693-2704
Auxin is central to many aspects of plant development; accordingly, plants have evolved several mechanisms to regulate auxin levels, including de novo auxin biosynthesis, degradation, and conjugation to sugars and amino acids. Here, we report the characterization of an Arabidopsis thaliana mutant, IAA carboxyl methyltransferase1-dominant (iamt1-D), which displayed dramatic hyponastic leaf phenotypes caused by increased expression levels of the IAMT1 gene. IAMT1 encodes an indole-3-acetic acid (IAA) carboxyl methyltransferase that converts IAA to methyl-IAA ester (MeIAA) in vitro, suggesting that methylation of IAA plays an important role in regulating plant development and auxin homeostasis. Whereas both exogenous IAA and MeIAA inhibited primary root and hypocotyl elongation, MeIAA was much more potent than IAA in a hypocotyl elongation assay, indicating that IAA activities could be effectively regulated by methylation. IAMT1 was spatially and temporally regulated during the development of both rosette and cauline leaves. Changing expression patterns and/or levels of IAMT1 often led to dramatic leaf curvature phenotypes. In iamt1-D, the decreased expression levels of TCP genes, which are known to regulate leaf curvature, may partially account for the curly leaf phenotype. The identification of IAMT1 and the elucidation of its role in Arabidopsis leaf development have broad implications for auxin-regulated developmental process.  相似文献   

3.
4.
Salicylic acid methyltransferase (SAMT), benzoic acid methyltransferase (BAMT) and theobromine methyltransferase (TH) (henceforth, SABATH) family proteins belong to a unique class of mehtyltransferase that can methylate small molecular compounds Including indole-3-acidic acid (IAA), salicylic acid (SA) and jasmonic acid (JA), in plants. Here we report that the GAMT2 protein, which has 34.2% similarity with IAMT1 in the amino acid sequence, can methylate gibberellic acid (GA). Biolnformatics analysis suggests that GAMT2 may be able to methylate one molecule larger than SA. GAMT2 is predominantly expressed in the developing seed embryo and endosperm in Arabidopsis. During seed germination, the expression of GAMT2 decreases until the cotyledons expand out of the seed coat. Overexpression of GAMT2 in Arabidopsis resulted in multiple phenotypes, including dwarfism, retarded growth, late flowering, and reduced fertility, which are similar to the phenotypes of GA-deficient mutants. Seed germination assay showed that GAMT2 overexpression in plants was hypersensitive to GA biosynthesis inhibitor (ancymidol) and abscisic acid (ABA) treatments, whereas the GAMT2 null mutant (SALK_075450) was slightly Insensitive to such treatments, suggesting that GAMT2 may methylate GA or ABA. Enzyme activity analysis indicated that GAMT2 was able to methylate GA3 into Methyi-GA3 in vitro, but could not methylate ABA. Microarray analysis on GAMT2 overexpression plants suggested that Methyl-GA may be an Inactive form of GA in Arabidopsis. These data suggest that GAMT2 Is Involved in seed maturation and germination by modulating GA activity.  相似文献   

5.
拟南芥 MeIAA 抗性突变体的筛选和初步图位克隆分析   总被引:3,自引:1,他引:2  
生长素是最重要的植物激素之一, 参与了植物生长发育的各个方面。植物体内游离的IAA是生长素的主要活性形式, 在IAA甲基转移酶1(IAMT1)的作用下, IAA可以转变为IAA甲酯 (MeIAA)。MeIAA本身没有活性, 在植物体内的MeIAA酯解酶作用下可以重新转变为IAA。 MeIAA是非极性分子, 能够在植物体内自由扩散。利用MeIAA的这种特殊性质筛选突变体, 可以分离到MeIAA代谢途径或者IAA途径中新的成分。我们对拟南芥种子进行EMS诱变, 通过观察黑暗下下胚轴的生长情况, 筛选MeIAA的抗性突变体。我们成功分离到了8株可能的抗性突变体, 并对其中的一个Methyl -IAA resistant 1 (mir1) 突变体进行了深入分析。MeIAA抗性突变体的筛选将为进一步了解MeIAA的代谢、IAA稳态调控和响应机理提供新的材料。  相似文献   

6.
NIMA-related kinases (Neks) are a family of serine/threonine kinases that have been linked to cell-cycle regulation in fungi and mammals. Information regarding the function of Neks in plants is very limited. We screened the three plant species that have had their genomes sequenced in an attempt to improve our understanding of their role in plants. We retrieved seven members in Arabidopsis thaliana, nine in Populus trichocarpa and six in Oryza sativa. Phylogenetic analysis showed that plant Neks are closely related to each other and contain paralogous genes. Moreover, their chromosome distribution and their exon-intron structure revealed that the actual plant Nek family was derived from a single representative followed by large segmental duplication events. Functional expression analyses in the three species relied on RTqPCR in poplar and publicly available microarray data for Arabidopsis and rice. Although plant Neks are present in every organ analyzed, their expression profiles suggest their involvement in plant development processes. Furthermore, we showed that PNek1, a member of the poplar family, is expressed at sites of free auxin synthesis and is specifically involved during the vascularization process.  相似文献   

7.
High temperature is a general stress factor that causes a decrease in crop yield. It has been shown that auxin application reduces the male sterility caused by exposure to higher temperatures. However, widespread application of a hormone with vast effects on plant physiology may be discouraged in many cases. Therefore, the generation of new plant varieties that locally enhance auxin in reproductive organs may represent an alternative strategy. We have explored the possibility of increasing indole‐3‐acetic acid (IAA) in ovaries by reducing IAA methyltransferase1 (IAMT1) activity in Arabidopsis thaliana. The iamt1 mutant showed increased auxin signalling in funiculi, which correlated with a higher growth rate of wild‐type pollen in contact with mutant ovaries and premature ovule fertilization. While the production of seeds per fruit was similar in the wild type and the mutant at 20 °C, exposure to 29 °C caused a more severe decrease in fertility in the wild type than in the mutant. Loss of IAMT1 activity was also associated with the production of more nodes after flowering and higher tolerance of the shoot apical meristem to higher temperatures. As a consequence, the productivity of the iamt1 mutant under higher temperatures was more than double of that of the wild type, with almost no apparent trade‐off.  相似文献   

8.
Methylcinnamate, which is widely distributed throughout the plant kingdom, is a significant component of many floral scents and an important signaling molecule between plants and insects. Comparison of an EST database obtained from the glandular trichomes of a basil (Ocimum basilicum) variety that produces high levels of methylcinnamate (line MC) with other varieties producing little or no methylcinnamate identified several very closely related genes belonging to the SABATH family of carboxyl methyltransferases that are highly and almost exclusively expressed in line MC. Biochemical characterization of the corresponding recombinant proteins showed that cinnamate and p-coumarate are their best substrates for methylation, thus designating these enzymes as cinnamate/p-coumarate carboxyl methyltransferases (CCMTs). Gene expression, enzyme activity, protein profiling, and metabolite content analyses demonstrated that CCMTs are responsible for the formation of methylcinnamate in sweet basil. A phylogenetic analysis of the entire SABATH family placed these CCMTs into a clade that includes indole-3-acetic acid carboxyl methyltransferases and a large number of uncharacterized carboxyl methyltransferase-like proteins from monocots and lower plants. Structural modeling and ligand docking suggested active site residues that appear to contribute to the substrate preference of CCMTs relative to other members of the SABATH family. Site-directed mutagenesis of specific residues confirmed these findings.  相似文献   

9.
生长素是最重要的植物激素之一,参与了植物生长发育的各个方面。植物体内游离的IAA是生长素的主要活性形式,在IAA甲基转移酶1(IAMT1)的作用下,IAA可以转变为IAA甲酯(MelAA)。MelAA本身没有活性,在植物体内的MelAA酯解酶作用下可以重新转变为IAA。MelAA是非极性分子,能够在植物体内自由扩散。利用MelAA的这种特殊性质筛选突变体,可以分离到MelAA代谢途径或者IAA途径中新的成分。我们对拟南芥种子进行EMS诱变,通过观察黑暗下下胚轴的生长情况,筛选MelAA的抗性突变体。我们成功分离到了8株可能的抗性突变体,并对其中的一个Methyl-JAAresistant1(mir1)突变体进行了深入分析。MelAA抗性突变体的筛选将为进一步了解MelAA的代谢、IAA稳态调控和响应机理提供新的材料。  相似文献   

10.
The discovery of 5-hydroxymethyl-cytosine (5hmC) in mammalian cells prompted us to look for this base in the DNA of Arabidopsis thaliana (thale cress), and to ask how well the Arabidopsis Variant in Methylation 1 (VIM1) protein, an essential factor in maintaining 5-cytosine methylation (5mC) homeostasis and epigenetic silencing in this plant, recognizes this novel base. We found that the DNA of Arabidopsis' leaves and flowers contain low levels of 5hmC. We also cloned and expressed in Escherichia coli full-length VIM1 protein, the archetypal member of the five Arabidopsis VIM gene family. Using in vitro binding assays, we observed that full-length VIM1 binds preferentially to hemi-methylated DNA with a single modified 5mCpG site; this result is consistent with its known role in preserving DNA methylation in vivo following DNA replication. However, when 5hmC replaces one or both cytosine residues at a palindromic CpG site, VIM1 binds with approximately ≥10-fold lower affinity. These results suggest that 5hmC may contribute to VIM-mediated passive loss of cytosine methylation in vivo during Arabidopsis DNA replication.  相似文献   

11.
We isolated and identified a full-length cDNA, OsBISAMT1 [Oryza sativa L. benzothiadiazole (BTH)-induced SAMT 1], which encodes a putative S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase (SAMT) from rice. OsBISAMT1 contains an ORE of 1128 bp, which predicts to encode a 375 aa protein. The OsBISAMT1 protein sequence shows a high level of identity to known plant SAMTs and contains a conserved characteristic methyltransferase domain. OsBISAMT1 is a member of a small gene family in the rice genome. Expression of OsBISAMT1 in rice leaves was induced by treatments with benzothiadiazole and salicylic acid, which are capable of inducing rice disease resistance. OsBISAMT1 was also up-regulated in both incompatible and compatible interactions between rice and the blast fungus, Magnaporthe grsiea, but the induced expression of OsBISAMT1 was greater and more rapid in the incompatible interaction than that in the compatible one. Moreover, mechanical wounding also activated OsBISAMT1 expression. The results suggest that OsBISAMT1 may be involved in disease resistance responses as well as in wound response in rice.  相似文献   

12.
13.
Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid.  相似文献   

14.
Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 μM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC–MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.  相似文献   

15.
Increasing its root to shoot ratio is a plant strategy for restoring water homeostasis in response to the long-term imposition of mild water stress. In addition to its important role in diverse fundamental processes, indole-3-acetic acid (IAA) is involved in root growth and development. Recent extensive characterizations of the YUCCA gene family in Arabidopsis and rice have elucidated that member’s function in a tryptophan-dependent IAA biosynthetic pathway. Through forward- and reverse-genetics screening, we have isolated Tos17 and T-DNA insertional rice mutants in a CONSTITUTIVELY WILTED1 (COW1) gene, which encodes a new member of the YUCCA protein family. Homozygous plants with either a Tos17 or T-DNA-inserted allele of OsCOW1 exhibit phenotypes of rolled leaves, reduced leaf widths, and lower root to shoot ratios. These phenotypes are evident in seedlings as early as 7–10 d after germination, and remain until maturity. When oscow1 seedlings are grown under low-intensity light and high relative humidity, the rolled-leaf phenotype is greatly alleviated. For comparison, in such conditions, the transpiration rate for WT leaves decreases approx. 5- to 10-fold, implying that this mutant trait results from wilting rather than being a morphogenic defect. Furthermore, a lower turgor potential and transpiration rate in their mature leaves indicates that oscow1 plants are water-deficient, due to insufficient water uptake that possibly stems from that diminished root to shoot ratio. Thus, our observations suggest that OsCOW1-mediated IAA biosynthesis plays an important role in maintaining root to shoot ratios and, in turn, affects water homeostasis in rice.  相似文献   

16.
Yang Y  Xu R  Ma CJ  Vlot AC  Klessig DF  Pichersky E 《Plant physiology》2008,147(3):1034-1045
The plant hormone auxin (indole-3-acetic acid [IAA]) is found both free and conjugated to a variety of carbohydrates, amino acids, and peptides. We have recently shown that IAA could be converted to its methyl ester (MeIAA) by the Arabidopsis (Arabidopsis thaliana) enzyme IAA carboxyl methyltransferase 1. However, the presence and function of MeIAA in vivo remains unclear. Recently, it has been shown that the tobacco (Nicotiana tabacum) protein SABP2 (salicylic acid binding protein 2) hydrolyzes methyl salicylate to salicylic acid. There are 20 homologs of SABP2 in the genome of Arabidopsis, which we have named AtMES (for methyl esterases). We tested 15 of the proteins encoded by these genes in biochemical assays with various substrates and identified several candidate MeIAA esterases that could hydrolyze MeIAA. MeIAA, like IAA, exerts inhibitory activity on the growth of wild-type roots when applied exogenously. However, the roots of Arabidopsis plants carrying T-DNA insertions in the putative MeIAA esterase gene AtMES17 (At3g10870) displayed significantly decreased sensitivity to MeIAA compared with wild-type roots while remaining as sensitive to free IAA as wild-type roots. Incubating seedlings in the presence of [(14)C]MeIAA for 30 min revealed that mes17 mutants hydrolyzed only 40% of the [(14)C]MeIAA taken up by plants, whereas wild-type plants hydrolyzed 100% of absorbed [(14)C]MeIAA. Roots of Arabidopsis plants overexpressing AtMES17 showed increased sensitivity to MeIAA but not to IAA. Additionally, mes17 plants have longer hypocotyls and display increased expression of the auxin-responsive DR5:beta-glucuronidase reporter gene, suggesting a perturbation in IAA homeostasis and/or transport. mes17-1/axr1-3 double mutant plants have the same phenotype as axr1-3, suggesting MES17 acts upstream of AXR1. The protein encoded by AtMES17 had a K(m) value of 13 microm and a K(cat) value of 0.18 s(-1) for MeIAA. AtMES17 was expressed at the highest levels in shoot apex, stem, and root of Arabidopsis. Our results demonstrate that MeIAA is an inactive form of IAA, and the manifestations of MeIAA in vivo activity are due to the action of free IAA that is generated from MeIAA upon hydrolysis by one or more plant esterases.  相似文献   

17.
Krom N  Ramakrishna W 《Plant physiology》2008,147(4):1763-1773
Comparative analysis of the organization and expression patterns of divergent and convergent gene pairs in multiple plant genomes can identify patterns that are shared by more than one species or are unique to a particular species. Here, we study the coexpression and interspecies conservation of divergent and convergent gene pairs in three plant species: rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and black cottonwood (Populus trichocarpa). Strongly correlated expression levels between divergent and convergent genes were found to be quite common in all three species, and the frequency of strong correlation appears to be independent of intergenic distance. Conservation of divergent or convergent arrangement among these species appears to be quite rare. However, conserved arrangement is significantly more frequent when the genes display strongly correlated expression levels or have one or more Gene Ontology (GO) classes in common. A correlation between intergenic distance in divergent and convergent gene pairs and shared GO classes was observed, in varying degrees, in rice and Populus but not in Arabidopsis. Furthermore, multiple GO classes were either overrepresented or underrepresented in Arabidopsis and Populus gene pairs, while only two GO classes were underrepresented in rice divergent gene pairs. Three cis-regulatory elements common to both Arabidopsis and rice were overrepresented in the intergenic regions of strongly correlated divergent gene pairs compared to those of noncorrelated pairs. Our results suggest that shared as well as unique mechanisms operate in shaping the organization and function of divergent and convergent gene pairs in different plant species.  相似文献   

18.
Indole-3-acetic acid (IAA) is found in plants in both free and conjugated forms. Within the group of conjugated IAA there is a unique class of proteins and peptides where IAA is attached directly to the polypeptide structure as a prosthetic group. The first gene, IAP1, encoding for a protein with IAA as a prosthetic group, was cloned from bean (Phaseolus vulgaris). It was shown that the expression of IAP1 as a major IAA modified protein in bean seed (PvIAP1) was correlated to a developmental period of rapid growth during seed development. Moreover, this protein underwent rapid degradation during germination. Since further molecular analysis was difficult in bean, the IAP1 gene was transformed into Arabidopsis thaliana and Medicago truncatula. Expression of the bean IAP1 gene in both plant species under the control of its native promoter targeted protein expression to the seeds. In Arabidopsis no IAA was found to be attached to PvIAP1. These results show that there is specificity to protein modification by IAA and suggests that protein conjugation may be catalyzed by species specific enzymes. Furthermore, subcellular localization showed that in Arabidopsis PvIAP1 was predominantly associated with the microsomal fraction. In addition, a related protein and several smaller peptides that are conjugated to IAA were identified in Arabidopsis. Further research on this novel class of proteins from Arabidopsis will both advance our knowledge of IAA proteins and explore aspects of auxin homeostasis that were not fully revealed by studies of free IAA and lower molecular weight conjugates.  相似文献   

19.
20.
Plant DNA methyltransferases   总被引:46,自引:0,他引:46  
DNA methylation is an important modification of DNA that plays a role in genome management and in regulating gene expression during development. Methylation is carried out by DNA methyltransferases which catalyse the transfer of a methyl group to bases within the DNA helix. Plants have at least three classes of cytosine methyltransferase which differ in protein structure and function. The METI family, homologues of the mouse Dnmt1 methyltransferase, most likely function as maintenance methyltransferases, but may also play a role in de novo methylation. The chromomethylases, which are unique to plants, may preferentially methylate DNA in heterochromatin; the remaining class, with similarity to Dnmt3 methyltransferases of mammals, are putative de novo methyltransferases. The various classes of methyltransferase may show differential activity on cytosines in different sequence contexts. Chromomethylases may preferentially methylate cytosines in CpNpG sequences while the Arabidopsis METI methyltransferase shows a preference for cytosines in CpG sequences. Additional proteins, for example DDM1, a member of the SNF2/SWI2 family of chromatin remodelling proteins, are also required for methylation of plant DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号