首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.  相似文献   

3.
Selenium is essential for many aspects of human health. While selenium is known to protect against cancer and cardiovascular diseases, the role of selenium in adipose development is unknown. Here we show that selenate at non-toxic concentration exhibits an anti-adipogenic function in vitro and ex vivo. In addition, selenate induced a morphological change of these cells from fibroblast-like to spindle cell shape. However, other forms of selenium, including selenite and methylseleninic acid, showed either toxic or no effect on adipogenesis and morphology change of preadipocytes. The effects of selenate on adipogenesis and cell morphology change were blunted by the treatment with SB431542, a specific inhibitor of transforming growth factor-β1 (TGF-β1) receptor, neutralization TGF-β1 by its antibody, and knockdown of TGF-β1 in preadipocytes, suggesting a requirement of TGF-β signaling for the anti-adipogenic function of selenate. Among tested forms of selenium, selenate appears to be an effective activator of TGF-β1 expression in preadipocytes. These results indicate that selenate is a novel dietary micromineral that activates TGF-β1 signaling in preadipocytes and modulates adipogenesis.  相似文献   

4.
Silibinin is a polyphenolic flavonoid isolated from the milk thistle (Silybum marianum) and is reported to exhibit anticancer properties. Recently, it has been reported that silibinin inhibits hypoxia-inducible factor-1α (HIF-1α) expression in cancer cells. However, the precise mechanism by which silibinin decreases HIF-1 expression is not fully understood. In this study, silibinin inhibited basal and hypoxia induced expression levels of HIF-1α protein in LNCaP and PC-3 prostate cancer cells, while the rate of HIF-1α protein degradation and mRNA levels were not affected. We found that the decrease in HIF-1 protein by silibinin correlated with suppression of de novo synthesis of HIF-1α protein. Silibinin inhibited global protein synthesis coincided with reduction of eIF4F complex formation and induction of phosphorylation of the translation initiation factor 2α (eIF-2α) which can cause inhibition of general protein synthesis. These results suggest that silibinin’s activity to inhibit HIF-1α protein expression is associated with the suppression of global protein translation.  相似文献   

5.
Cartilage formation during both embryonic development and bone repairing processes involves mesenchymal stem cells (MSCs) differentiation. Wnt/β-catenin signaling pathway inhibits early chondrogenesis and is down-regulated during Transforming growth factor-β1 (TGF-β1)-induced chondrogenesis. However, the regulatory molecules that participate in the process is unknown. This study was designed to investigate the underlying mechanisms that down-regulate Wnt/β-catenin pathway during chondrogenesis. TGF-β1-induced micromass cultures of C3H10T1/2 were used as chondrocyte differentiation model. Gene expression profile was detected by realtime-PCR. Regulatory role of HDAC1 on β-catenin was investigated by luciferase assay, chromatin immunoprecipitation (ChIP) assay, co-immunoprecipitation (Co-IP) assay and in vitro ubiquitination assay. In this study, we showed that HDAC1 was induced and suppressed β-catenin gene expression through direct binding to its promoter. Besides, HDAC1 could also interact with deacetylate β-catenin protein through its deacetylase domain, which causes degradation of β-catenin. Our results indicate that HDAC1 plays an important role in chondrogenesis and may represent a therapeutic target for modulation of cartilage development.  相似文献   

6.
Modulation of osteoblast functions by T lymphocytes is important in inflammation-associated mineralized tissue diseases. The study aimed to determine whether direct interaction between these two cell types affects osteoblast functions and mineralization. The results showed that direct contact between the two cell types was evident by scanning electron microscopy and transmission electron microscopy. Under osteogenic induction, higher hydroxyapatite precipitation was observed in cocultures with direct contact with T lymphocytes compared with that by osteoblasts cultured alone. Cocultures without direct cell contact caused a decrease in mineralization. Direct cell contact also upregulated intercellular adhesion molecule (ICAM)-1 and simultaneously downregulated transforming growth factor (TGF)-β1 in osteoblasts. However, the downregulation of TGF-β1 was reversed by ICAM-1 blocking. Exogenously added TGF-β1 in cocultures with direct cell contact suppressed mineralization. In conclusion, studies are consistent with ICAM-1-mediated direct contact between osteoblasts and T lymphocytes increasing mineralization via downregulation of TGF-β1 in osteoblasts in vitro. This suggests a possible unexpected, but crucial, role of T lymphocytes in enhancing matrix mineralization during the repair process in vivo. The study identifies ICAM-1/TGF-β1 as possible novel therapeutic targets for the treatment and prevention of inflammation-associated mineralized tissue diseases.  相似文献   

7.
Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD.  相似文献   

8.
Wang X  Sun W  Zhang C  Ji G  Ge Y  Xu Y  Zhao Y 《Gene》2011,485(2):160-166
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that regulates cell growth, differentiation, migration, apoptosis and extracellular matrix remodeling. TGF-β1 transduces signals from the cell membrane to the cell nucleus through serine/threonine kinase receptors and their downstream effectors, Smad molecules. Although many studies have been focused on TGF-β1-Smad signaling pathway, the role of TGF-β1/Smad in tongue squamous cell carcinoma is not fully understood. In the present study, we used a series of cell function assays to examine the role of TGF-β-Smad4 signaling in tongue squamous cell carcinoma. We observed the effects of TGF-β1 on the growth and metastatic potential of the tongue squamous cell carcinoma cell line Ts, which expresses lower level of Smad4 protein. We found that Smad4 could decrease TGF-β1-induced cell proliferation, and that Smad4 overexpression promoted Ts cell apoptosis. In Ts vector control cells, TGF-β1 increased the expression of TβRII, as well as MMP-2, and enhanced cell invasion through the basement membrane, and then induced cell metastasis. However in Ts cells stably expressing Smad4, Smad4 mediated TGF-β1-induced p21 expression promoted cell apoptosis and inhibited cell proliferation, delayed MMP-2 expression, and decreased cell metastasis. Therefore, TGF-β1 plays distinct roles in the Smad4-dependent and -independent signaling pathways.  相似文献   

9.
10.
11.
The purpose of the present study was to study the impacts of eplerenone(EPL), an antagonist of mineralocorticoid receptors(MR), on atrial fibrosis in a mouse model with selective fibrosis in the atrium, and to explore the possible mechanisms. Using mutant TGF-β1 transgenic(Tx) mice, we first demonstrated that EPL inhibited atrial fibrosis specifically and decreased macrophage accumulation in the atria of these mice. Results from immunohistochemistry and western blotting showed that EPL attenuated protein expression of fibrosis-related molecules such as connective tissue growth factor(CTGF) and fibronectin in the atria of Tx mice. In culture, EPL inhibited gene expression of fibrosis-related molecules such as fibronectin, α-SMA, and CTGF in TGF-β1-stimulated atrial fibroblasts. Finally, using a co-culture system, we showed that TGF-β1-stimulated atrial fibroblasts induced migration of macrophages and this was blocked by EPL. EPL also blocked TGF-β1-induced gene expression of intedeukin-6(IL-6) in atrial fibroblasts. Therefore, we conclude that EPL attenuated atrial fibrosis and macrophage infiltration in Tx mice. TGF-β1 and IL-6 were involved in the impacts of EPL on activation of atrial fibroblasts and interactions between fibroblasts and macrophages.  相似文献   

12.
13.
Summary Platelet-derived growth factor (PDGF) and transforming growth factor beta-1(TGF-β1) were tested separately or together for the ability to stimulate migration of human aortic vascular smooth muscle cells (VSMC). PDGF (10 ng/ml) stimulated migration of VSMC over a 48-h period. TGF-β1 (10 ng/ml) had no effect on migration during the same period. VSMC exposed simultaneously to both TGF-β1 and PDGF exhibited diminished migration (50%) when compared to cells treated only with PDGF. Cells that migrated in the presence of PDGF possessed short actin cables that extended from cellular processes at the leading edge of migrating cells; focal adhesions containing the αvβ35 integrins localized to the same region. Cells grown in the presence of TGF-β1 exhibited long, intensely stained actin filaments that spanned the entire length of the cell and were similar to untreated control VSMC. Focal adhesions containing αvβ35 distributed evenly on the basal surface in both TGF-β1-treated cells and control cultures. Cellular responses to PDGF were mitigated when TGF-β1 was present in the culture medium. VSMC grown in the presence of both PDGF and TGF-β1 exhibited elongated actin filaments that were similar to nonmotile TGF-β1-treated cultures. Concomitant exposure of VSMC to PDGF and TGF-β1 resulted in focal adhesions that distributed evenly on the lower cell surface. This study suggests that TGF-β1 can partially reverse the stimulatory effect of PDGF on VSMC migration in vitro by modifying the actin cytoskeleton and the distribution of the α vβ35 integrins.  相似文献   

14.
15.
16.
α-Melanocyte-stimulating hormone (α-MSH), an anti-inflammatory and immunomodulatory neuropeptide, has been shown to be effective in the experimental treatment of autoimmune diseases and allograft rejection. However, its regulatory mechanism is still unclear. Mature dendritic cells (DCs) are pivotal initiators of immune response and inflammation. We hypothesized that the regulatory role of α-MSH in DC maturation would contribute to the effects of α-MSH in immune-response-mediated disease models. It was found that α-MSH inhibited tumor necrosis factor-alpha (TNF-α)-induced maturation of human peripheral-monocyte-derived DCs (MoDCs), both phenotypically and functionally. This occurred through the down-regulation of the expression of co-stimulatory molecules CD83 and CD86, the production of IL-12, the promotion of IL-10 secretion, and the MoDC phagocytic activity, suggesting that the inhibition of DC maturation by α-MSH could contribute to the anti-inflammatory effect of this neuropeptide. Furthermore, increased expression of annexin A1 (ANXA1) was found to be responsible for the α-MSH inhibiting effect on TNF-α-induced MoDC maturation, which could be abolished by the treatment of MoDCs with specific, small interfering RNAs targeting ANXA1 (ANXA1-siRNA), suggesting that α-MSH-induced ANXA1 mediates the inhibition. Therefore, α-MSH inhibits TNF-α-induced maturation of human DCs through α-MSH-up-regulated ANXA1, suggesting that inhibition of the maturation of DCs by α-MSH could mediate the anti-inflammatory effect of the neuropeptide. Furthermore, ANXA1 could be identified as a new therapeutic drug target based on the role of DCs in immune-mediated inflammatory diseases.  相似文献   

17.
18.

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of insidious onset, and is responsible for up to 30,000 deaths per year in the U.S. Excessive production of extracellular matrix by myofibroblasts has been shown to be an important pathological feature in IPF. TGF-β1 is expressed in fibrotic lung and promotes fibroblast to myofibroblast differentiation (FMD) as well as matrix deposition.

Methods

To identify the mechanism of Arsenic trioxide’s (ATO)’s anti-fibrotic effect in vitro, normal human lung fibroblasts (NHLFs) were treated with ATO for 24 hours and were then exposed to TGF-β1 (1 ng/ml) before harvesting at multiple time points. To investigate whether ATO is able to alleviate lung fibrosis in vivo, C57BL/6 mice were administered bleomycin by oropharyngeal aspiration and ATO was injected intraperitoneally daily for 14 days. Quantitative real-time PCR, western blotting, and immunofluorescent staining were used to assess the expression of fibrotic markers such as α-smooth muscle actin (α-SMA) and α-1 type I collagen.

Results

Treatment of NHLFs with ATO at very low concentrations (10-20nM) inhibits TGF-β1-induced α-smooth muscle actin (α-SMA) and α-1 type I collagen mRNA and protein expression. ATO also diminishes the TGF-β1-mediated contractile response in NHLFs. ATO’s down-regulation of profibrotic molecules is associated with inhibition of Akt, as well as Smad2/Smad3 phosphorylation. TGF-β1-induced H2O2 and NOX-4 mRNA expression are also blocked by ATO. ATO-mediated reduction in Smad3 phosphorylation correlated with a reduction of promyelocytic leukemia (PML) nuclear bodies and PML protein expression. PML-/- mouse embryonic fibroblasts (MEFs) showed decreased fibronectin and PAI-1 expression in response to TGF-β1. Daily intraperitoneal injection of ATO (1 mg/kg) in C57BL/6 mice inhibits bleomycin induced lung α-1 type I collagen mRNA and protein expression.

Conclusions

In summary, these data indicate that low concentrations of ATO inhibit TGF-β1-induced fibroblast to myofibroblast differentiation and decreases bleomycin induced pulmonary fibrosis.  相似文献   

19.
Lim S  Bae E  Kim HS  Kim TA  Byun K  Kim B  Hong S  Im JP  Yun C  Lee B  Lee B  Park SH  Letterio J  Kim SJ 《PloS one》2012,7(3):e32705
Transforming growth factor-β1 (TGF-β1) is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS) suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII), which is TGF-β-dependent and requires type I TGF-β receptor (TβRI) kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-β signaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression.  相似文献   

20.
Lefty is a novel member of the transforming growth factor (TGF) supergene family which has the potential to antagonise actions of TGF-β1 - the main factor driving fibrotic disease in the kidney and in other organs. TGF-β1 can induce fibrosis through several mechanisms, including epithelial-mesenchymal transition (EMT) which contributes to myofibroblast accumulation in the renal interstitium. This study examined whether Lefty can antagonise TGF-β1 mediated EMT. A rat tubular epithelial cell line (NRK52E) was stably transfected with a Lefty expression plasmid (52E-Lefty) or control plasmid (52E-Control). 52E-Control cells underwent TGF-β1 induced EMT with up-regulation of α-smooth muscle actin (α-SMA), down-regulation of E-cadherin, and transition to an elongated fibroblast-like morphology. In contrast, 52E-Lefty cells were substantially protected from TGF-β1 induced EMT. Analysis of signalling pathways showed that 52E-Lefty cells had a marked reduction in TGF-β1 induced Smad activity and suppression of the secondary phase of JNK (but not p38) signalling. Treatment of NRK52E cells with a JNK inhibitor was shown to suppress TGF-β1 induced EMT. In conclusion, Lefty can antagonise TGF-β1 mediated EMT in renal tubular epithelial cells. Lefty may have potential as an anti-fibrotic molecule in the treatment of renal fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号