首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The organization of a cloned rRNA gene cluster from Chlorella ellipsoidea chloroplast DNA (cpDNA) has been analyzed. Southern hybridization experiments with labelled chloroplast rRNAs as probes revealed an extraordinarily large size of the 16S-23S rRNA spacer region, ca. 4.8 kbp, almost twice as large as those of most higher plants. The nucleotide sequence determined on this region has shown that: (1) The tRNAIle gene locating in this region is similar to those of higher plant chloroplasts, blue-green algae and E. coli but does not contain any introns in contrast to higher plant chloroplasts. (2) The tRNAAla gene is absent from this region. (3) There are four open reading frames (ORFs) coding for 55, 102, 107 and 110 amino acids, respectively. (4) A few sets of unique sequence were found repeatedly in this region. (5) The 23S rRNA gene is coded on the opposite strand in the reverse order. This arrangement of the 16S-23S rRNA region of Chlorella cpDNA is quite different from any of those reported so far for various organisms.  相似文献   

3.
4.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

5.
E Roux  L Graf    E Stutz 《Nucleic acids research》1983,11(7):1957-1968
An extra 16S rRNA gene (s-16S rDNA) from the Euglena gracilis chloroplast genome and several hundred positions of its flanking regions have been sequenced. The structural part has 1486 positions and is to 98% homologous in its sequence with the 16S rRNA gene in functional chloroplast rRNA operons. Sequences of about 200 positions upstream and 15 positions downstream of the structural part of the s-16S rRNA gene region are highly homologous with corresponding parts in the functional operon. Neither tRNA genes (A1a, I1e) nor parts of the 23S and 5S rRNA genes are found within 557 positions after the 3' end of the s-16S rRNA gene, i.e., the 330 bp homology, observed in electron microscopic studies of heteroduplexes (4), between the s-16S rDNA downstream region and the 6.2 kb repeated segment containing the functional rRNA operon, must be due to a DNA stretch in the interoperon spacer. A structural model of the "truncated rRNA operon" is presented. Results from S-1 endonuclease analysis suggest that the s-16S rDNA region is probably not transcribed into stable s-16S rRNA.  相似文献   

6.
7.
8.
A 6.3 kbp Eco RI-Bam HI fragment which carries most of one of the two rRNA gene clusters of the blue-green alga Anacystis nidulans was cloned into plasmid pBR322. Sequence analysis of the spacer region between the 16S and 23S rRNA genes reveals the presence of genes for tRNAIle and tRNAAla. The 16S rRNA gene is separated from the tRNAIle gene by a 162 bp spacer which shows significant homology to the comparable region in Zea mays plastids. The spacer between the two tRNA genes is 33 bp long and can be folded into a 9 bp stem and loop structure. The 5' portion of the tRNAIle gene is 60% homologous to a "pseudogene"-like sequence which maps beyond the 5S rRNA gene.  相似文献   

9.
The nucleotide sequence of 16S rDNA from Euglena gracilis chloroplasts has been determined representing the first complete sequence of an algal chloroplast rRNA gene. The structural part of the 16S rRNA gene has 1491 nucleotides according to a comparative analysis of our sequencing results with the published 5'- and 3'-terminal "T1-oligonucleotides" from 16S rRNA from E. gracilis. Alignment with 16S rDNA from Zea mays chloroplasts and E. coli reveals 80 to 72% sequence homology, respectively. Two deletions of 9 and 23 nucleotides are found which are identical in size and position with deletions observed in 16S rDNA of maize and tobacco chloroplasts and which seem to be characteristic for all chloroplast rRNA species. We also find insertions and deletions in E. gracilis not seen in 16S rDNA of higher plant chloroplasts. The 16S rRNA sequence of E. gracilis chloroplasts can be folded by base pairing according to the general 16S rRNA secondary structure model.  相似文献   

10.
11.
We sequenced the chloroplast 16S rRNA gene of two Euglena gracilis mutants which contain streptomycin-resistant chloroplasts (Smr 139.12/4 and Smr 139.20/2). These mutants are known to contain a single intact rrn operon per circular chloroplast genome. Nucleotide sequence comparison between a 16S rRNA gene of wild type Euglena gracilis, strain Z, with streptomycin-sensitive chloroplasts, and the 16S rRNA gene of both Smr-strains reveals a single base change (C to T) at position 876. This position is equivalent to the invariant position 912 of the E. coli 16S rRNA gene. The analogous position is also conserved in all chloroplast small subunit RNA genes from lower and higher plants sequenced so far. Light dependent protein synthesis with purified chloroplasts from streptomycin-resistant cells is not inhibited by streptomycin. Based on the results reported here we postulate linkage between the observed point mutation on the 16S rRNA gene and streptomycin-resistance of chloroplast 70S ribosomes.  相似文献   

12.
The nucleotide sequence of an 8 kbp region of pea ( Pisum sativum L.) chloroplast DNA containing the rRNA operon and putative promoter sites has been determined and compared to the corresponding sequences from maize, tobacco and the liverwort Marchantia polymorpha . The chloroplast DNA species of all vascular plants investigated, with the exception of a few legumes including pea, and of Marchantia contain an inverted repeat with an rRNA operon. The pea rRNA operon is the first sequenced rRNA operon from a plant with only one copy of the rRNA genes per molecule of chloroplast DNA. The organization of the operon is the same as for maize, tobacco and Marchantia . i.e. tRNA-Val gene/16S rRNA gene/spacer with intron-containing genes for tRNA-Ile and tRNA-Ala/23S rRNA gene/4.5S rRNA gene/5S rRNA gene. Current evidence suggests that the tRNA-Val gene may not be contranscribed with the other genes. For pea 16S, 23S, 4.5S and 5S rRNA have 1488, 2813, 105 and 121 nucleotides, respectively. The homologies of the entire operon (the tRNA-Val gene - 5S rRNA region) to those from tobacco, maize and Marchantia are 88, 82 and 79%, respectively. The corresponding homologies for tobacco/maize, tobacco/ Marchantia and maize/ Marchantia have similar values. The 16S and 23S rRNA genes from pea are more than 90% homologous to those from the 3 other species. We conclude that the fact that pea only has one set of rRNA genes per molecule of chloroplast DNA is apparently not correlated with any significant difference between the pea operon and the rRNA operons from tobacco, maize and Marchantia .  相似文献   

13.
The complete nucleotide sequence of a 23-S rRNA gene from tobacco chloroplasts   总被引:19,自引:0,他引:19  
The nucleotide sequence of a tobacco chloroplast 23-S rRNA gene, including the spacer between it and the 4.5-S rRNA gene, has been determined. The 23-S rRNA coding region is 2804-base-pairs long. A comparison with the 23-S rRNA sequence of Escherichia coli reveals strong homology and further shows a similarity between the chloroplast 4.5-S rRNA and the 3'-terminal region of E. coli 23-S rRNA. However, the 101-base-pair spacer sequence between the 23-S and 4.5-S rRNA genes has little homology with E. coli 23-S rRNA.  相似文献   

14.
15.
We characterize a DNA segment of the Euglena gracilis chloroplast DNA fragment Eco . N by nucleotide sequencing and S1 nuclease analysis. We show that this region, which is upstream of the previously sequenced tuf A gene, contains the genes for the ribosomal proteins S12 and S7. The gene arrangement is 5'-rps 12-80 bp spacer-rps 7-174 bp spacer-tuf A, somewhat similar to the str operon of E. coli. The chloroplast S12 and S7 proteins contain 124 and 155 aminoacids, respectively, and are to 68% and 38% homologous with the corresponding E. coli proteins. The region is transcribed into a distronic mRNA of about 1.1 to 1.2 kb. The rps 12 and rps 7 genes, contrary to the tuf A gene, are not split.  相似文献   

16.
The nucleotide sequence of the segment of tobacco chloroplast DNA adjacent to and including the start of the 16S rRNA gene has been determined. The region just preceding this gene was found to contain a tRNAVal gene and promoter-type sequences similar to those which occur in E. coli were found before this tRNA gene. E. coli RNA polymerase can recognize these sequences and in vitro co-transcribes the tRNA and rRNA genes.  相似文献   

17.
The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans, has been determined. Its coding region is estimated to be 1,487 base pairs long, which is nearly identical to those reported for chloroplast 16S rRNA genes and is about 4% shorter than that of the Escherichia coli gene. The 16S rRNA sequence of A. nidulans has 83% homology with that of tobacco chloroplast and 74% homology with that of E. coli. Possible stem and loop structures of A. nidulans 16S rRNA sequences resemble more closely those of chloroplast 16S rRNAs than those of E. coli 16S rRNA. These observations support the endosymbiotic theory of chloroplast origin.  相似文献   

18.
The nucleotide sequence of a 7.4 kb region containing the entire plastid ribosomal RNA operon of the nongreen parasitic plant Epifagus virginiana has been determined. Analysis of the sequence indicates that all four rRNA genes are intact and almost certainly functional. In contrast, the split genes for tRNAIle and tRNAAla present in the 16S-23S rRNA spacer region have become pseudogenes, and deletion upstream of the 16S rRNA gene has removed a tRNAVal gene and most of the promoter region for the rRNA operon. The rate of nucleotide substitution in 16S and 23S rRNAs is several times higher in Epifagus than in tobacco, a related photosynthetic plant. Possible reasons for this, including relaxed translational constraints, are discussed.  相似文献   

19.
20.
Two BamHl fragments containing broad bean chloroplast rRNA genes were cloned using the bacterial plasmid pBR322 as a vector and Escherichia coli HB101 as host bacterial. Physical maps of the two cloned ct DNA BamHI fragments containing rRNA genes were constructed by cleavage with several restriction endonucleases and Southern blot hybridization with E. coli 16S-23S rRNAs. Recombinant plasmids pVFBI6 and pVFB32 contain a 16S rRNA sequence on the 4.70 kb BamHl fragment, a 23S rRNA sequence and 4.5S/5S rRNA sequences on the 5.65 kb BamHl fragment, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号