首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stentor coeruleus exhibits negative phototaxis and step-up photophobic response (avoiding reaction) to visible light (maximum at 610-620 nm in both responses). In the presence of deuterium oxide (D2O) the step-up photophobic response was markedly enhanced, whereas the phototactic orientation response was inhibited. The induction time for the step-up photophobic response was longer in D2O than in H2O, and the duration of ciliary reversal for the response was also longer in D2O than in H2O, indicating that certain steps of the sensory transduction chain are subject to solvent deuterium isotope effects. The enhancement of the step-up photophobic response in D2O was canceled by LaCl3, while the inhibition of the phototactic orientation response in D2O was partially removed by LaCl3, even though LaCl3 did not affect the phototactic orientation response. These results suggest that the sensory transduction mechanisms for the two photoresponses are different, although the photoreceptors (stentorin) are the same.  相似文献   

2.
Negative phototactic orientation, step-up photophobic responses and light-induced action potentials have been studied in the ciliate Stentor coeruleus. A resolved action spectrum, based on fluence rate-response curves, is consistent with stentorin as the photoreceptor. Calcium flux blockers prolong the response time for ciliary stop and reversal and inhibit step-up photophobic responses. Drugs believed to affect the membrane-bound calcium pump likewise inhibit phobic responses. On the other hand, α-phosphatidic acid promotes Ca2+-influx and enhances the photophobic sensitivity of the organism, thus providing an unambiguous evidence for the role of Ca2+ influx. A change in the response time decreases the degree of phototactic orientation, indicating that negative phototaxis in this organism is brought about by subsequent phobic responses of individual rows of cilia as the associated photoreceptor granules experience an increase in light intensity when the organism rotates during forward locomotion in lateral light.  相似文献   

3.
A real-time automated method was developed for simultaneous measurements of phototactic orientation (phototaxis) and step-up photophobic response of flagellated microorganisms. Addition of all-trans retinal restored both photoresponses in a carotenoid-deficient mutant strain of Chlamydomonas reinhardtii in a dose-dependent manner. The phototactic orientation was biphasic with respect to both the light intensity and the concentration of retinal. All-trans retinal was more effective than 11-cis retinal to regenerate both photobehavioral responses. Analogs having locked 11-cis configurations and a phenyl ring in the side chain also induced photoresponses, although at concentrations more than two orders of magnitude higher than all-trans retinal. According to the present assay method, the responses were hardly detectable in cells incubated with retinal analogs in which the 13-ene was locked in either its trans or cis configuration. The results strongly suggest that the isomerization of the 13-14 double bond is important for photobehavioral signal transduction and that a single retinal-dependent photoreceptor controls both phototactic and photophobic responses.  相似文献   

4.
We analyzed the motor photoresponses of Halobacterium salinarium to different test stimuli applied after a first photophobic response produced by a step-down of red-orange light (prestimulus). We observed that pulses given with a suitable delay after the prestimulus produced unusual responses. Pulses of blue, green, or red-orange light, each eliciting no response when applied alone, produced a secondary photophobic response when applied several seconds after the prestimulus; the same occurred with a negative blue pulse (rapid shut-off and turning on of a blue light). Conversely, no secondary photophobic response was observed when the test stimulus was a step (a step-up for red-orange light, a step-down for blue light) of the same wavelength and intensity. When the delay was varied, different results were obtained with different wavelengths; red-orange pulses were typically effective in producing a secondary photophobic response, even with a delay of 2 s, whereas the response to a blue pulse was suppressed when the test stimulus was applied within 5 s after the prestimulus. The secondary photophobic response to pulses was abolished by reducing the intensity of the prestimulus without affecting the primary photophobic response. These results, some of which were previously reported in the literature as inverse effects, must be produced by a facilitating mechanism depending on the prestimulus itself, the occurrence of reversals being per se ineffective. The fact that red-orange test stimuli are facilitated even at the shortest delay, whereas those of different wavelengths become effective only after several seconds, suggests that the putative mechanism of the facilitating effect is specific for different signaling pathways.  相似文献   

5.
The unicellular ciliary protozoan, Stentor coeruleus, exhibits photophobic and phototactic responses to visible light stimuli. The pigment granule contains the photoreceptor chromoproteins (stentorins). Stentorin localized in the pigment granules of the cell serves as the primary photoreceptor for the photophobic and phototactic responses in this organism. An initial characterization of the pigment granules has been described in terms of size, absorbance spectra and ATPase activity. Two forms of the stentorin pigments have been isolated from the pigment granules. Stentorin I has an apparent molecular weight of 68,600 and 52,000 by SDS-PAGE (at 10 and 13% gel, respectively) or 102,000 by steric exclusion HPLC, whereas stentorin II is a larger molecular assembly probably composed of several proteins (mol. wt. greater than 500,000). Stentorin I is composed of at least two heterologous subunits corresponding to apparent mol. wts. of 46,000 (fluorescent, Coomassie blue negative) and 52,000 (fluorescent, Coomassie blue positive) on SDS-PAGE (13% gel). However, these values were found to be strongly dependent on the degree of crosslinking in the acrylamide gel. Stentorin II appears to be the primary photoreceptor whose absorption and fluorescence properties are consistent with the action spectra for the photoresponses of the ciliate to visible light.  相似文献   

6.
7.
In order to elucidate the primary stage in the blepharismin phototransduction pathway, changes in the molecular structure of light-exposed blepharismins and oxyblepharismins, were examined. When exposed to light, blepharismins (pink form) were converted into oxyblepharismins (blue form) or dissociated into stentorins/p-hydroxybenzaldehyde with an O2-requiring process, whereas light-exposed oxyblepharismins were not dissociated into stentorins/p-hydroxybenzaldehyde. Since both blepharismins and oxyblepharismins can activate the phototransduction chain leading to the step-up photophobic response presumably through the same pathway, dissociation of p-hydroxybenzaldehyde may not be involved in signal transduction. The fact that the step-up photophobic response requires O2, and both blepharismins and oxyblepharismins produce hydroxyl (OH) radicals probably derived from O2 implies that OH radicals may activate the photosignalling pathway. The step-up photophobic response was not suppressed by a spin trapping reagent for hydroxyl radicals. Other possible primary responses leading to the step-up photophobic response are discussed.  相似文献   

8.
The effects of the metabolic inhibitors KCN and SHAM on phototaxis and photophobic response in Amoeba proteus have been studied. Both drugs neither change amoebae photophobic response nor the phototactic reaction. The results indicate clearly that the negative phototactic orientation is not impaired by impediment of respiration thus it is not directly coupled to the differences in energy production in different parts of A. proteus body.  相似文献   

9.
Photomovement has been studied in the symbiontic association of the colorless flagellate, Cyanophora paradoxa Korschikoff with the cyanelles, Cyanocyta korschikoffiana. There is no phototactic orientation in this organism, but a photokinetic effect. In addition, the cells show a pronounced step-up photophobic response (however no or only a weak step-down response). The phobic response is mediated by a subset of the photosynthetic pigments located in the symbiontic cyanelles. It is linked to the noncyclic photosynthetic electron transport chain but it is independent of the photosynthetic generation of a proton gradient and the ATP synthesis linked to it.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - DBMIB 2,5-dibromo-3-methyl-6-isopropylbenzo quinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

10.
Pronase-treated cells of Euglena gracilis Z show no discernible ultrastructural effects on the photoreceptor apparatus; however, there are physiological effects on swimming speed and on step-up and step-down photophobic responses, especially the latter. Pronase acts differently on the two photophobic responses: the step-down response is completely inhibited after 2 hr., whereas inhibition of the step-up response occurs in only 50% of the cells even after 24 hr. The effects are fully reversible, with step-up recovery quite rapid and step-down recovery considerably slower.  相似文献   

11.
The avoidance by Stentor coeruleus of a light trap is caused by a step-up photophobic response. The phobic response invariably consists of a delay of about 200 ms, a stop response, a turn to one side, and resumption of swimming in the new direction. After this the cells enter a refractory period of 1–3 s following a phobic response, during which they will not give a second response. Phobic responses can be elicited by spatial and temporal increases in light intensity. The action spectrum for the step-up photophobic response resembles the absorption spectrum of stentorin, the proposed photoreceptor pigment, and of its chromophore, hypericin.The phobic response is specifically inhibited by the protonophorous uncouplers TPMP+ and FCCP but not by the ionophores gramicidin and A23187. Since the uncouplers block light-induced membrane potential changes at the same concentrations, it has been proposed that the primary photoreception causes a light-induced potential change, which in turn, induces a motor response.Abbreviations TPMP+ triphenyl methyl phosphonium bromide - FCCP carbonylcyanide p-trifluoromethoxy-phenylhydrazone  相似文献   

12.
We determined the action spectra of the photophobic responses as well as the phototactic response in Dunaliella salina (Volvocales) using both single cells and populations. The action spectra of the photophobic responses have maxima at 510 nm, the spectrum for phototaxis has a maximum at 450–460 nm. These action spectra are not compatible with the hypothesis that flavoproteins are the photoreceptor pigments, and we suggest that carotenoproteins or rhodopsins act as the photoreceptor pigments. We also conclude that the phototactic response in Dunaliella is an elementary response, quite independent of the step-up and step-down photophobic responses. We also determined the action spectra of the photoaccumulation response in populations of cells adapted to two different salt conditions. Both action spectra have a peak a 490 nm. The photoaccumulation response may be a complex response composed of the phototactic and photophobic responses. Blue or blue-green light does not elicit a photokinetic response in Dunaliella.Diagrams of the optical set-ups used for measuring the responses at the single-cell level and of the plans for building the phototaxometer described in this paper are available to the interested readerWe thank Mr. M. Kubota for a tremendous amount of technical assistance and Mr. R. Nagy for building the phototaxometer. We thank T. Kondo, Professor H. Imaseki and the members of the Laboratory of Biological Regulation, NIBB, for their help and support in various aspects of this research. This research was supported, in part, from grants from the Okazaki Large Spectrograph (Project Nos. 86-535, 87-518, 88-523), the Japanese Society for the Promotion of Science, and the College of Agriculture and Life Sciences at Cornell University to R. W.  相似文献   

13.
Effects of preillumination on photophobic response (light-adaptation) and recovery of the photophobic sensitivity in the dark (dark-adaptation) in Stentor coeruleus were examined. When the cells were preilluminated with white light of 7.80 W/m2 for 2 min, the fluence-rate response curve of photophobic response was shifted toward higher light intensities by half an order of magnitude compared to the one without preillumination. Preillumination with a higher light intensity resulted in a further shift of the fluencerate response curve. An action spectrum for light-adaptation showed a primary peak at 610 nm and secondary peaks at 540 and 480 nm which are almost identical to the peaks observed in the photophobic action spectrum.The light-adapted cells showed a recovery of their photophobic sensing ability following dark treatment. Dark-adaptation resulted in total recovery of photophobic sensing ability in 8 minutes for the most cases examined.  相似文献   

14.
Here we report that a Ca2+ antagonist mibefradil (Ro 40-5967) which has been shown to be a selective inhibitor of T-type calcium channels increases free calcium concentration ([Ca2+]i) in the cytoplasm of cultured smooth muscle cells isolated from porcine coronary artery. Smooth muscle cells were loaded with Fura 2 and a videoimage system was used to follow the [Ca2+]i responses. It was shown that at a concentration of 1 nM mibefradil induced a transient [Ca2+]i elevation in individual cells and at a concentration of 100 nM this compound stimulated almost all the cells in monolayer. The [Ca2+]i response did not change with the further increase of the mibefradil concentration up to 10 microM. The half-maximal effect was observed at 10 nM. The increase in [Ca2+]i strongly depended on the presence of Ca in the extracellular medium. Calcium antagonists belonging to three different classes--verapamil (phenylalkylamines), diltiazem (benzothiazepines) and amlodipin (dihydropyridines) neither suppressed the mibefradil effect nor mimicked it. These data indicate that mibefradil increased [Ca2+]i acting via a distinct receptor site. We suggest that these receptors are coupled to calcium channels of plasma membrane.  相似文献   

15.
1. On the basis of chromatographic and spectroscopic (absorption, fluorescence and its polarization, fluorescence lifetime, circular dichroism) characterization of the Stentor photoreceptor (stentorin) for photophobic response, the photoreceptor chromophore released from mild acid hydrolysis has been identified as hypericin. 2. The native chromophore is apparently linked to a protein (65 K) containing Lys and several hydrophobic residues, which is soluble in acetone and n-pentane. The peptide-linked stentorin (I) chromophore exhibits circular dichroism in the visible region due to the induced optical activity provided by the peptide. 3. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of a 38% fraction of the sucrose density centrifugation has resolved stentorin II proteins having molecular weights of 13 000, 16 000, 65 000 and 130 000. These proteins, as well as the acetone-soluble peptide, have been spectroscopically characterized with particular emphasis on their primary photoreactivity as the photophobic receptor of Stentor coeruleus. 4. Irradiation of whole living Stentor in dilute buffer solutions induces a decrease in the pH of the medium. A strong dependence upon pH in the fluorescence spectra of both synthetic and native chromophores is also evident, showing a significant drop in the pKa of one or more hydroxyl groups in the excited state. A mechanism for the photophobic response, based on this lowering of the pKa as the primary photoprocess, has been discussed.  相似文献   

16.
Net fluxes of Ca2+ and acid production were studied in clonal insulin-releasing cells (RINm5F) by using colour indicators and dual-wavelength spectrophotometry. After equilibration with a medium containing 10-20 microM-Ca2+, only minimal amounts of Ca2+ (0.08 mmol/kg of protein) were released from the cells by subsequent additions of the respiratory blocker antimycin A and the Ca2+ ionophore A23187. The presence of 20 mM-glucose resulted in an almost 5-fold increase of the acid production and in a stimulated net uptake of Ca2+. The latter process was independent of the extracellular Ca2+ concentration and reached saturation after 20 +/- 1 min, when it corresponded to 1.18 +/- 0.07 mmol of calcium/kg of protein. Whereas the thiol reagent iodoacetamide suppressed the acid production, interference with mitochondrial function by using antimycin A or the uncoupler carbonyl cyanide m-chlorophenylhydrazone had the opposite effect. The latter two drugs induced a selective release of Ca2+ from a pool containing 35% of that taken up during glucose exposure. Most of the remaining Ca2+ was liberated by A23187 or iodoacetamide. Carbamoylcholine was also selective in mobilizing glucose-stimulated calcium, but this calcium (17%) appeared to originate from the pool insensitive to mitochondrial poisons. The action of carbamoylcholine was blocked by atropine and did not depend on the presence of extracellular Na+. The opposite effects of glucose and muscarinic-receptor activation on a non-mitochondrial calcium pool are consistent with participation of the endoplasmic reticulum in the glucose-induced sequestration of Ca2+ in pancreatic beta-cells.  相似文献   

17.
Euglena gracilis, a unicellular freshwater protist exhibits different photomovement responses, such as phototaxis (oriented movement toward or away from the light source) and photophobic (abrupt turn in response to a rapid increase [step-up] or decrease [step-down] in the light fluence rate) responses. Photoactivated adenylyl cyclase (PAC) has been isolated from whole-cell preparations and identified by RNA interference (RNAi) to be the photoreceptor for step-up photophobic responses but not for step-down photophobic responses (M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, C. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe [2002] Nature 415: 1047-1051). The present study shows that knockdown of PAC by RNAi also effectively suppresses both positive and negative phototaxis, indicating for the first time that PAC or a PAC homolog is also the photoreceptor for photoorientation of wild-type E. gracilis. Recovery from RNAi occurred earlier for step-up photophobic responses than for positive and negative phototaxis. In addition, we investigated several phototaxis mutant strains of E. gracilis with different cytological features regarding the stigma and paraxonemal body (PAB; believed to be the location for the phototaxis photoreceptor) as well as Astasia longa, a close relative of E. gracilis. All of the E. gracilis mutant strains had PAC mRNAs, whereas in A. longa, a different but similar mRNA was found and designated AlPAC. Consistently, all of these strains showed no phototaxis but performed step-up photophobic responses, which were suppressed by RNAi of the PAC mRNA. The fact that some of these strains possess a cytologically altered or no PAB demonstrates that at least in these strains, the PAC photoreceptor responsible for the step-up photophobic responses is not located in the PAB.  相似文献   

18.
SYNOPSIS. Treatment of Euglena gracilis with the cationic detergent CTAB at concentrations of 0.05 mM or higher selectively inhibited the ability of the cells to respond with flagellar reorientation to a sudden decrease of light intensity (step-down photophobic response). The ability to respond similarly to an increase in light intensity (step-up photophobic response) was unaffected even at detergent concentrations at which the step-down response was completely inhibited. Electron microscopy of cells treated with 1.0 mM CTAB revealed selective destruction of the membrane of the reservoir and flagellum. No selective effects upon the step-down or step-up photophobic responses were found upon treatment of the cells with Triton X-100.  相似文献   

19.
The response of individual Cryptomonas cells to continuous lightwas recorded using infrared video-micrography. Swimming directionsand temporal shifts in swimming direction of each cell weremeasured. White light of 0.1–1 W m–2 elicited apositive phototactic orientation, but did not induce any photophobicresponse. Light of 100 W m–2 induced a photophobic responseat the onset of actinic irradiation, but did not induce positivephototactic orientation. No correlation between positive phototacticorientation and photophobic response was found in this species.The direction toward the light source was defined as 0°,and the direction away from the source as 180°. Within 2s after the onset of lateral monochromatic light of 570 nm at0.1 W m–2, cells which were swimming in a direction ofless than 120° predominantly shifted their course towardthe light source. Cells swimming in directions of larger than120° shifted their course as randomly as those in the dark.Thus, for phototactic orientation, the cells must perceive thelight from their anterior side. (Received July 29, 1985; Accepted November 4, 1985)  相似文献   

20.
It has been shown in the experiments carried out on a fraction of inverted vesicles of myometrium sarcolemma that ATP-dependent Ca2+ transport system prevents dissipation of the calcium gradient directed from the intervesicular space outward with subsequent establishment of the stationary level of cation content inside the membrane vesicles (a blocker of electro-controlled calcium channels diltiasems was present in the incubation medium). Ortovanadatean inhibitor of the sarcolemma calcium pump suppressed Ca2+ stationary exchange in the vesicles fraction. The value of calcium stationary content in the vesicle membrane was regulated both by a change of the calcium pump activity (by varying Mg2+ concentration in the ATP-containing incubation medium), and by modification of calcium permeability of the vesicles (by varying concentration of ionophore A-23187 in this medium). In the presence of diltiasem and ortovanadate the Ca2+ basal current entering the myocytes from hyperpotassium washing solution activated the smooth muscle tonic contraction. In the absence of ortovanadate no contractile response was observed. On the basis of the evidence obtained a mechanism of calcium control of myometrium tonic contraction is proposed. According to this mechanism the Ca2+ current entering the unexcited myocytes under physiological conditions is efficiently compensated by the calcium pump of the sarcolemma. The inhibition of the latter (or an increase of the sarcolemma basal calcium permeability) provides further slow transition of the stationary value of Ca2+ concentration in the myoplasm to a new higher level and activation of the smooth muscle contraction accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号