首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Genetic Structure of American Populations of Drosophila Melanogaster   总被引:8,自引:0,他引:8  
Ives PT 《Genetics》1945,30(2):167-196
  相似文献   

3.
4.
Prout T 《Genetics》1954,39(4):529-545
  相似文献   

5.
6.
7.
8.
9.
10.
11.
BDH. Latter  J. C. Mulley  D. Reid    L. Pascoe 《Genetics》1995,139(1):287-297
The rate of decline in reproductive fitness in populations of Drosophilia melanogaster inbred at an initial rate of ~1% per generation has been investigated under both competitive and noncompetitive conditions. Breeding population size was variable in the inbred lines with an estimated harmonic mean of 66.7 +/- 2.2. Of the 60 lines maintained without reserves, 75% survived a period of 210 generations of slow inbreeding and were then rapidly inbred by full-sib mating to near-homozygosity. The initial rate of inbreeding was estimated to be 0.96 +/- 0.16% per generation, corresponding to an effective population size of ~50. However, the rate of inbreeding declined significantly with time to average only 0.52 +/- 0.08% per generation over the 210 generation period, most likely due to associative overdominance built up by genetic sampling and selection in the small populations. The total inbreeding depression in fitness was estimated to be 87 +/- 3% for competitive ability and 27 +/- 5% for fitness under uncrowded conditions, corresponding to rates of decline of 2.0 +/- 0.3 and 0.32 +/- 0.07%, respectively, per 1% increase in the inbreeding coefficient. The frequency of lethal second chromosomes in the resultant near-homozygous lines was of the order of 5%, lethal free second chromosomes showed a mean viability under both crowded and uncrowded conditions of ~95%, and their population cage fitness was 60% that of Cy/+ heterozygotes. It can be concluded that homozygous genotypes from which deleterious genes of major effect have been eliminated during slow inbreeding may show far less depression in reproductive fitness than suggested by earlier studies of wild chromosome homozygotes. The loss in fitness due to homozygosity throughout the entire genome may be as little as 85-90% under competitive conditions, and 25-30% in an optimal environment.  相似文献   

12.
13.
14.
15.
Males carrying different X chromosomes were tested for the ability to produce daughters with attached-X chromosomes. This ability is characteristic of males carrying an X chromosome derived from 59b-z, a multiply marked X chromosome, and is especially pronounced in males carrying the unstable 59b-z chromosomes Uc and Uc-lr. Recombination experiments with one of the Uc-lr chromosomes showed that the formation of compound chromosomes depends on two widely separated segments. One of these is proximal to the forked locus and is probably proximal to the carnation locus. This segment may contain the actual site of chromosome attachment. The other essential segment lies between the crossveinless and vermilion loci and may contain multiple factors that influence the attachment process.  相似文献   

16.
17.
18.
A. A. Hoffmann  D. J. Clancy    E. Merton 《Genetics》1994,136(3):993-999
In Drosophila melanogaster, weak incompatibility in crosses between infected and uninfected strains is associated with a Wolbachia microorganism. Crosses between infected males and uninfected females show a reduction (15-30%) in egg hatch. Progeny tests indicated that the infection is widespread in Australian D. melanogaster populations and that populations are polymorphic for the presence of the infection. The infection status of 266 lines from 12 populations along the eastern coast of Australia was determined by 4',6-diamidino-2-phenylindole (DAPI) staining of embryos. All populations contained both infected and uninfected flies. Infection frequencies varied between populations but there was no discernible geographical pattern. Laboratory experiments indicated that the infection was not associated with a reduction in fecundity as in Drosophila simulans. Incompatibility levels could not be increased by laboratory selection on isofemale lines. Factors contributing to the persistence of the infection in D. melanogaster populations are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号