首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoenolpyruvate carboxylase (PEPC) was purified from leaves of four species of Alternanthera differing in their photosynthetic carbon metabolism: Alternanthera sessilis (C3), A. pungens (C4), A. ficoides and A. tenella (C3-C4 intermediates or C3-C4). The activity and properties of PEPC were examined at limiting (0.05 mM) or saturating (10 mM) bicarbonate concentrations. The Vmax as well as Km values (for Mg2+ or PEP) of PEPC from A. ficoides and A. tenella (C3-C4 intermediates) were in between those of C3 (A. sessilis) and C4 species (A. pungens). Similarly, the sensitivity of PEPC to malate (an inhibitor) or G-6-P (an activator) of A. ficoides and A. tenella (C3-C4) was also of intermediate status between those of C3 and C4 species of A. sessilis and A. pungens, respectively. In all the four species, the maximal activity (Vmax), affinity for PEP (Km), and the sensitivity to malate (KI) or G-6-P (KA) of PEPC were higher at 10 mM bicarbonate than at 0.05 mM bicarbonate. Again, the sensitivity to bicarbonate of PEPC from C3-C4 intermediates was in between those of C3- and C4-species. Thus the characteristics of PEPC of C3-C4 intermediate species of Alternanthera are intermediate between C3- and C4-type, in both their kinetic and regulatory properties. Bicarbonate could be an important modulator of PEPC, particularly in C4 plants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Soil organic carbon (SOC) pools are important in maintaining soil productivity and influencing the CO2 loading into the atmosphere. An attempt is made here to investigate into the dynamics of pools of SOC viz., total organic carbon (C tot), oxidisable organic carbon (C oc) and its four different fractions such as very labile (C frac 1), labile (C frac 2), less labile (C frac 3) and non-labile (C frac 4), microbial biomass carbon (C mic), mineralizable carbon (C min), and particulate organic carbon (C p) in relation to crop productivity using a 34 year old rice (Oryza sativa L)–wheat (Triticum aestivum L)–jute (Corchorus olitorius L) cropping system with different management strategies (no fertilization, only N, NP, NPK and NPK + FYM) in the hot humid, subtropics of India. A fallow treatment was also included to compare the impact of cultivation vis-à-vis no cultivation. Cultivation over the years caused a net decrease, while balanced fertilization with NPK maintained the SOC pools at par with the fallow. Only 22% of the C applied as FYM was stabilized into SOC, while the rest got lost. Of the analysed pools, C frac 1, C mic, C p and C min were influenced most by the treatments imposed. Most of the labile pools were significantly correlated with each other and with the yield and sustainable yield index (SYI) of the studied system. Of them, C frac1, C min, C mic and C p explained higher per cent variability in the SYI and yield of the crops. Results suggest that because of low cost and ease of estimation and also for upkeeping environmental conditions, C frac1 may be used as a good indicator for assessment of soil as to its crop productivity. Responsible Editor: Hans Lambers.  相似文献   

3.
n-Alkanes pattern in response to NaCl stress has been studied in the cyanobacterium Anabaena cylindrica. Saturated hydrocarbons were separated and identified by gas chromatography-mass spectrometry (GC-MS) using serially coupled capillary column. Light chain n-alkanes in the range of C9–C17 (43%) and heavy chain n-alkanes in range of C17–C23 (34%) and C23–C31 (23%) were identified as the major components of total hydrocarbons in the NaCl adapted cells of A. cylindrica. In contrast, NaCl-untreated cells of A. cylindrica had dominance of only long chain n-alkanes in the range of C23–C31 comprising about 94% of its total n-alkanes. The persistence of high level (43%) of short chain n-alkanes (C9–C17) in NaCl adapted cells of A. cylindrica as compared to its negligible level (0.2%) in NaCl untreated counterpart clearly indicates that NaCl stress causes the A. cylindrica to shift towards the synthesis of short chain n-alkanes.  相似文献   

4.
The parameters estimated from traditional A/C i curve analysis are dependent upon some underlying assumptions that substomatal CO2 concentration (C i) equals the chloroplast CO2 concentration (C c) and the C i value at which the A/C i curve switches between Rubisco- and electron transport-limited portions of the curve (C i-t) is set to a constant. However, the assumptions reduced the accuracy of parameter estimation significantly without taking the influence of C i-t value and mesophyll conductance (g m) on parameters into account. Based on the analysis of Larix gmelinii’s A/C i curves, it showed the C i-t value varied significantly, ranging from 24 Pa to 72 Pa and averaging 38 Pa. t-test demonstrated there were significant differences in parameters respectively estimated from A/C i and A/C c curve analysis (p<0.01). Compared with the maximum ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), the maximum electron transport rate (Jmax) and Jmax/Vcmax estimated from A/C c curve analysis which considers the effects of g m limit and simultaneously fits parameters with the whole A/C c curve, mean Vcmax estimated from A/C i curve analysis (Vcmax-C i) was underestimated by 37.49%; mean Jmax estimated from A/C i curve analysis (Jmax-C i) was overestimated by 17.8% and (Jmax-C i)/(Vcmax-C i) was overestimated by 24.2%. However, there was a significant linear relationship between Vcmax estimated from A/C i curve analysis and Vcmax estimated from A/C c curve analysis, so was it Jmax (p<0.05).  相似文献   

5.
Atmospheric CO2 (Ca) has risen dramatically since preglacial times and is projected to double in the next century. As part of a 4‐year study, we examined leaf gas exchange and photosynthetic acclimation in C3 and C4 plants using unique chambers that maintained a continuous Ca gradient from 200 to 550 µmol mol?1 in a natural grassland. Our goals were to characterize linear, nonlinear and threshold responses to increasing Ca from past to future Ca levels. Photosynthesis (A), stomatal conductance (gs), leaf water‐use efficiency (A/gs) and leaf N content were measured in three common species: Bothriochloa ischaemum, a C4 perennial grass, Bromus japonicus, a C3 annual grass, and Solanum dimidiatum, a C3 perennial forb. Assimilation responses to internal CO2 concentrations (A/Ci curves) and photosynthetically active radiation (A/PAR curves) were also assessed, and acclimation parameters estimated from these data. Photosynthesis increased linearly with Ca in all species (P < 0.05). S. dimidiatum and B. ischaemum had greater carboxylation rates for Rubisco and PEP carboxylase, respectively, at subambient than superambient Ca (P < 0.05). To our knowledge, this is the first published evidence of A up‐regulation at subambient Ca in the field. No species showed down‐regulation at superambient Ca. Stomatal conductance generally showed curvilinear decreases with Ca in the perennial species (P < 0.05), with steeper declines over subambient Ca than superambient, suggesting that plant water relations have already changed significantly with past Ca increases. Resource‐use efficiency (A/gs and A/leaf N) in all species increased linearly with Ca. As both C3 and C4 plants had significant responses in A, gs, A/gs and A/leaf N to Ca enrichment, future Ca increases in this grassland may not favour C3 species as much as originally thought. Non‐linear responses and acclimation to low Ca should be incorporated into mechanistic models to better predict the effects of past and present rising Ca on grassland ecosystems.  相似文献   

6.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   

7.
Stands of Scirpus olneyi, a native saltmarsh sedge with C3 photosynthesis, had been exposed to normal ambient and elevated atmospheric CO2 concentrations (Ca) in their native habitat since 1987. The objective of this investigation was to characterize the acclimation of photosynthesis of Scirpus olneyi stems, the photosynthesizing organs of this species, to long-term elevated Ca treatment in relation to the concentrations of Rubisco and non-structural carbohydrates. Measurements were made on intact stems in the Held under existing natural conditions and in the laboratory under controlled conditions on stems excised in the field early in the morning. Plants grown at elevated Ca had a significantly higher (30–59%) net CO2 assimilation rate (A) than those grown at ambient Ca when measurements were performed on excised stems at the respective growth Ca. However, when measurements were made at normal ambient Ca, A was smaller (45–53%) in plants grown at elevated Ca than in those grown at ambient Ca. The reductions in A at normal ambient Ca, carboxylation efficiency and in situ carboxylase activity were caused by a decreased Rubisco concentration (30–58%) in plants grown at elevated Ca; these plants also contained less soluble protein (39–52%). The Rubisco content was 43 to 58% of soluble protein, and this relationship was not significantly altered by the growth CO2 concentrations. The Rubisco activation state increased slightly, but the in situ carboxylase activity decreased substantially in plants grown at elevated Ca. When measurements were made on intact stems in the field, the elevated Ca treatment caused a greater stimulation of,A (100%) and a smaller reduction in carboxylation efficiency (which was not statistically significant) than when measurements were made on excised stems in the laboratory. The possible reasons for this arc discussed. Plants grown at elevated Ca contained more non-structural carbohydrates (25–53%) than those grown at ambient Ca. Plants grown at elevated Ca appear to have sufficient sink capacity to utilize the additional carbohydrates formed during photosynthesis. Overall, our results are in agreement with the hypothesis that elevated Ca leads to an increased carbohydrate concentration and the ensuing acclimation of the photo-synthetic apparatus in C3 plants results in a reduction in the protein complement, especially Rubisco, which reduces the photosynthetic capacity in plants grown at elevated Ca, relative to plants grown at normal ambient Ca. Nevertheless, when compared at their respective growth Ca, Scirpus olneyi plants grown at elevated Ca in their native habitat maintained a substantially higher rate of photosynthesis than those grown at normal ambient Ca even after 8 years of growth at elevated Ca.  相似文献   

8.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

9.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

10.
Protein recovery by continuous flotation   总被引:2,自引:0,他引:2  
Summary Bovine serum albumin (BSA) was recovered from aqueous solutions by foam flotation. The protein concentrations in foam liquid C S, in feed C Pand in residue C Rwere determined. The protein enrichment C S/CPand the separation C S/CRas well as the protein fraction in the foam liquid % BSA and foam liquid volume flow were determined as functions of the medium properties, operational conditions, and equipment parameters as well as concentrations of solid particles. At low protein concentrations in feed (e.g., C P=40 mg · l-1), and at 40° C, high performance was attained (C X=2,000 mg · l-1, C R=4.4 mg · l-1, C S/CP=50, C S/CR=450, 90% BSA. Continuous foam flotation is an efficient procedure for the recovery of low concentrations of proteins from liquid cultures.Abbreviations BSA bovine serum albumine - C P protein concentration in feed (mg · l-1) - C R protein concentration in residue (mg · l-1) - C S protein concentration in foam liquid (mg · l-1) - C S/CR protein separation (-) - C S/CP protein enrichment (-) - V P feed rate (ml · min-1) - V R residue flow rate (ml · min-1) - V S foam liquid volume flow (ml · min-1) - N number of theoretical stages in an ideal cascade (-) - temperature (° C) - mean residence time (min)  相似文献   

11.
Photosynthetic pathway characteristics were studied in nine species of Heliotropium (sensu lato, including Euploca), using assessments of leaf anatomy and ultrastructure, activities of PEP carboxylase and C4 acid decarboxylases, and immunolocalization of ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and the P‐subunit of glycine decarboxylase (GDC). Heliotropium europaeum, Heliotropium calcicola and Heliotropium tenellum are C3 plants, while Heliotropium texanum and Heliotropium polyphyllum are C4 species. Heliotropium procumbens and Heliotropium karwinskyi are functionally C3, but exhibit ‘proto‐Kranz’ anatomy where bundle sheath (BS) cells are enlarged and mitochondria primarily occur along the centripetal (inner) wall of the BS cells; GDC is present throughout the leaf. Heliotropium convolvulaceum and Heliotropium greggii are C3–C4 intermediates, with Kranz‐like enlargement of the BS cells, localization of mitochondria along the inner BS wall and a loss of GDC in the mesophyll (M) tissue. These C3–C4 species of Heliotropium probably shuttle photorespiratory glycine from the M to the BS tissue for decarboxylation. Heliotropium represents an important new model for studying C4 evolution. Where existing models such as Flaveria emphasize diversification of C3–C4 intermediates, Heliotropium has numerous C3 species expressing proto‐Kranz traits that could represent a critical initial phase in the evolutionary origin of C4 photosynthesis.  相似文献   

12.
Phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.3) is a key enzyme of C4 photosynthesis. It has evolved from ancestral non-photosynthetic (C3) isoforms and thereby changed its kinetic and regulatory properties. We are interested in understanding the molecular changes, as the C4 PEPCases were adapted to their new function in C4 photosynthesis and have therefore analysed the PEPCase genes of various Alternanthera species. We isolated PEPCase cDNAs from the C4 plant Alternanthera pungens H.B.K., the C3/C4 intermediate plant A. tenella Colla, and the C3 plant A. sessilis (L.) R.Br. and investigated the kinetic properties of the corresponding recombinant PEPCase proteins and their phylogenetic relationships. The three PEPCases are most likely derived from orthologous gene classes named ppcA. The affinity constant for the substrate phosphoenolpyruvate (K 0.5 PEP) and the degree of activation by glucose-6-phosphate classified the enzyme from A. pungens (C4) as a C4 PEPCase isoform. In contrast, both the PEPCases from A. sessilis (C3) and A. tenella (C3/C4) were found to be typical C3 PEPCase isozymes. The C4 characteristics of the PEPCase of A. pungens were accompanied by the presence of the C4-invariant serine residue at position 775 reinforcing that a serine at this position is essential for being a C4 PEPCase (Svensson et al. 2003). Genomic Southern blot experiments and sequence analysis of the 3′ untranslated regions of these genes indicated the existence of PEPCase multigene family in all three plants which can be grouped into three classes named ppcA, ppcB and ppcC.  相似文献   

13.
A biological system consisting of a population of cells suspended in a liquid substrate is considered. The general problem addressed in the paper is the derivation of the kinetic pattern of population growth as a statistical effect of a very large number of elementary interactions between a single cell and the molecules of nutrient in substrate. Solution of the problem is obtained in the form of equation expressing the population growth ratec as a function of substrate concentration,C s. The analytical expression derived is applied to a real bacterial population (Escherichi coli) and kinetic patterns are theoretically computed. The major findings, expressed roughly, without nuances, are: (i) the concentration of nutrient at the cell membrane,C c, can only be equal to either 0 (for theC s below some threshold valueC *) orC s (forC s>C *); (ii) the Michaelis-Menten-Monod kinetics observed in experiments is an artifact: the pure (not contaminated by foreign factors) dependence ofc onC s is actually such that the functionc=c(C s) has practically linear increase whenC s<C *, and is constant,c=c(C *)=const, whenC s>C *; (iii) the Liebig principle is strictly fulfilled: up to a feasible accuracy of observation, under no circumstances can population growth be limited (controlled) by more than one substrate component—replacement of a limiting component for another one is an instant event rather than a gradual process.  相似文献   

14.
The rapid increase in atmospheric CO2 concentrations (Ca) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca. Here we report data on annual sums of CO2 (NEEnet) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)‐ and Spartina patens (C4 photosynthetic pathway)‐dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEEnet = NEEday + NEEnight, kg C m?2 y?1) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEEnet averaged 1.9 kg m?2 y?1 in ambient Ca and 2.5 kg m?2 y?1 in elevated Ca, for the C3‐dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4‐dominated community, as NEEnet averaged 1.5 kg m?2 y?1 in ambient Ca and 1.7 kg m?2 y?1 in elevated Ca. This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEEnet for the C3‐ and C4‐dominated communities, respectively. Increased NEEday was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca, while decreased NEEnight was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3‐ and C4‐dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.  相似文献   

15.
A homologous series of eleven δ-lactones (1,5-alkanolides) was identified in cuticular waxes from leaves of Cerinthe minor L., six of them representing novel compounds. They accounted for 79% of the total coverage of 41 μg wax per cm2 leaf area. Various chemical transformations with product identification by GC-mass spectrometry and GC-FTIR were employed to assign the structures. The chain-lengths of the δ-lactones ranged from C22 to C32 and even-numbered homologues were prevalent. Additionally, aldehydes (C26–C30), alkanes (C23–C29), primary alcohols (C26–C32), alkanoic acids (C20–C32), wax esters (C40–C56) and lupeol were detected.  相似文献   

16.
The n‐alkane composition and the nonacosan‐10‐ol content in the needle cuticular waxes of Serbian spruce (Picea omorika), Bosnian pine (Pinus heldreichii), and Macedonian pine (Pinus peuce) were compared. The amount of nonacosan‐10‐ol in the needle waxes of P. omorika was higher than those in P. heldreichii and P. peuce. The range of n‐alkanes was also wider in P. omorika (C18–C35) than in P. heldreichii and P. peuce (C18–C33). The dominant n‐alkanes were C29 in the needle waxes of P. omorika, C23, C27, and C25 in those of P. heldreichii, and C29, C25, C27, and C23 in those of P. peuce. The waxes of P. omorika contained higher amounts of n‐alkanes C29, C31, and C33, while those of P. heldreichii and P. peuce had higher contents of n‐alkanes C21, C22, C23, C24, and C26. The principal component analysis of the contents of nine n‐alkanes showed a clear separation of the Serbian spruce populations from those of the two investigated pine species, which partially overlapped. The separation of the species was due to high contents of the n‐alkanes C29 and C31 (P. omorika), C19, C20, C21, C22, C23, and C24 (P. heldreichii), and C28 (P. peuce). Cluster analysis also showed a clear separation between the P. omorika populations on one side and the P. heldreichii and P. peuce populations on the other side. The n‐alkane and terpene compositions are discussed in the light of their usefulness in chemotaxonomy as well as with regard to the biogeography and phylogeny of these rare and endemic conifers.  相似文献   

17.
The effect of elevated carbon dioxide (600±50 cm3 m−3; C600) on growth performance, biomass production, and photosynthesis of Cenchrus ciliaris L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C600. Leaf area index increased triple fold in the crops grown in the open top chamber with C600. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C360) condition where the crops were grown for 20 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C600 over C360 plants. In comparison with C360, the rate of transpiration decreased by 6.8 % under C600. Long-term exposure (120 d) to C600 enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls a and b significantly increased in C600. Thus C. ciliaris grown in C600 throughout the crop season may produce more fodder in terms of green biomass.  相似文献   

18.
The protein content of the filamentous Cladophora glomerata (L.) Kz., Ulothrix zonata (Web, & Mohr) Kz. and Spirogyra sp., collected from natural populations for 1 year, averaged 8.0–12.4% of the total dry weight; whereas, the corresponding levels of lipid, cellulose and ash were 11.9–16.1%, 10.0–17.8% and 14.6–24.0%, respectively. Mean values for carbohydrates, estimated by difference, ranged from 32.8 to 56.0%. The colonial Scenedesmus dimorphus (Turp.) Kz. and the unicellular Cosmarium laeve Rab., on the other hand, contained more protein, lipid and carbohydrate (estimated by difference) averaging 13–15.0%, 22.5–25.9% and 415–46.8%, respectively, and less cellulose (7.5–9.8%) and ash (8.2–9.8%). A consistent pattern of seasonal variation in the proximate composition was not normally evident for any species, reflecting the influence of several environmental parameters on the algae. Cladophora contained the greatest amount of phospholipid averaging; 10% by weight of total lipid with the smallest quantity (5%) in Scenedesmus. The predominant phospholipid fatty acid in all species was C18:1 followed by C18:2, C18:3 and C16:1 in Cladophora, Ulothrix and Spirogyra, and C16:1, C18:2 and C16:0 in Scenedesmus and Cosmarium. Oleic (C18:1) and hexadecanoic (C16:1) acids were predominant in the neutral lipids of all the algae, followed by C16:0, C18:2 and C18:3. The concentration of the different fatty acids of each Species varied considerably during the year with the proportion of C16:0 and C16:1, usually rising and that of C18:1 failing during the colder months.  相似文献   

19.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

20.

The Chenopodiaceae is one of the families including C4 species among eudicots. In this family, the genus Chenopodium is considered to include only C3 species. However, we report here a transition from C3 photosynthesis to proto-Kranz to C3–C4 intermediate type in Chenopodium. We investigated leaf anatomical and photosynthetic traits of 15 species, of which 8 species showed non-Kranz anatomy and a CO2 compensation point (Γ) typical of C3 plants. However, 5 species showed proto-Kranz anatomy and a C3-like Γ, whereas C. strictum showed leaf anatomy and a Γ typical of C3–C4 intermediates. Chenopodium album accessions examined included both proto-Kranz and C3–C4 intermediate types, depending on locality. Glycine decarboxylase, a key photorespiratory enzyme that is involved in the decarboxylation of glycine, was located predominantly in the mesophyll (M) cells of C3 species, in both M and bundle-sheath (BS) cells in proto-Kranz species, and exclusively in BS cells in C3–C4 intermediate species. The M/BS tissue area ratio, number of chloroplasts and mitochondria per BS cell, distribution of these organelles to the centripetal region of BS cells, the degree of inner positioning (vacuolar side of chloroplasts) of mitochondria in M cells, and the size of BS mitochondria also changed with the change in glycine decarboxylase localization. All Chenopodium species examined were C3-like regarding activities and amounts of C3 and C4 photosynthetic enzymes and δ13C values, suggesting that these species perform photosynthesis without contribution of the C4 cycle. This study demonstrates that Chenopodium is not a C3 genus and is valuable for studying evolution of C3–C4 intermediates.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号