首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen chemical and physical characteristics were examined in samples of shallow ground water taken in midsummer at 15-30 cm below the surface in six bogs, 15 swamps, and six fens. The wetland types were identified on the basis of their vegetation. Three groups of covarying water characteristics were identified by factor analysis. Factor I included Ca, Mg, Si, pH, alkalinity, conductivity and to a much lesser extent Na, and reflects the degree of telluric water influence in the wetland. Factor 2 included reactive-P, total-P, NH3-N, and to a lesser extent K, and consists of elements that primarily enter interstitial water via organic matter decomposition. Factor 3 included Na, Cl, and to a much lesser extent K. The wetlands formed two distinct groups with respect to water chemistry: weakly minerotrophic (pH 3.8-4.3) including all bogs and moderately to strongly minerotrophic (pH 5.5-7.4) including all swamps and fens. The bogs had very low values for Factor 1 characteristics and moderate values for the remaining characteristics. The swamps and fens had moderate to high values for Factor 1 characteristics and showed considerable overlap in this respect. The fens had consistently low values for Factor 2 characteristics but overlapped with some swamps which also had low Factor 2 scores. Failure to completely separate the vegetationally very distinct swamps and fens from each other on the basis of their physical and chemical water characteristics indicates that another factor, probably water level regime, is of major importance in determining their vegetation type.  相似文献   

2.
Natural restoration of historical wetland plant communities in fallow fields with a degraded seed bank has been assumed to be possible only if source populations of the target species are present adjacent to the abandoned fields and a high density of suitable microsites is available. However, few studies have monitored both factors simultaneously and verified this assumption. We hypothesized that plant communities that are similar to historical wetlands, including back marshes, back swamps, and bogs, will reestablish in abandoned pasturelands in cases when (1) gaps for new recruitment emerge, followed by the decline of pastures; and (2) seeds with longevity are supplied from the surrounding remnant plant communities of wetlands. We conducted a survey of vegetation and microsites in pastures, abandoned pastures, and reference wetlands followed by structural equation modeling to verify our hypothesis for the natural restoration of Phragmites australis–Phalaris arundinacea and Alnus japonica–Spiraea salicifolia communities. These communities represent historical back marshes and back swamps along a river. However, our hypothesis was not verified for the natural restoration of Vaccinium oxycoccos–Sphagnum spp. communities, which represent plant communities in historical bogs grown on acidic peat that are maintained by rainfall and fog. Our findings partly support our hypothesis that decline in pastures creates gaps and that cumulative seed dispersal from nearby remnant wetlands allows the original wetland plant communities to regenerate. Further case studies are needed to determine how the natural restoration of bog plant communities occurs.  相似文献   

3.
We conduct a study of the dry forest in areas of scant rainfall in the Dominican Republic; these are sites with particular endemic habitats, as the samples reveal a high rate of local and insular endemic species, with 84 (24.85%) endemisms. This work covers dry forests rich in coarse spiny plants and includes a statistical (multivariate analysis), phytosociological and catenal study of the vegetation. We analyse the floristic composition, ecology, distribution and richness in endemisms of each association. The bioclimatic analysis reveals the different thermotypes and ombrotypes on the island, and locates the proposed plant associations in the infra- and thermotropical thermotypes, and in the arid, semiarid and dry ombrotypes. As a result of this phytosociological analysis, we propose the new alliance Harrio nashii–Acacion skleroxylae and four plant associations: Harrisio nashii–Prosopidetum juliflorae, Crotono poitaei–Erythroxyletum rotundifolii, Lonchocarpo pycnophylli–Cylindropuntietum caribaeae and Neoabbottio paniculatae–Guaiacetum officinali; these associations connect catenally with the subhumid forest and mangrove swamps.  相似文献   

4.
Summary The paper summarizes the vegetation pattern of the largest swamp (peat bog) area in the world. The core area covers about 800×1800 km (NS x EW) in West Siberia between the Ural mountains and the river Yenisey. The core area is one gigantic oligotrophic swamp (Peino-Helobiome acc), the new classification suggested in Walter 1976, see also summary in Vegetatio 32, 1976, pp. 75–81. A map of the entire area is presented.Intensive recent field studies were executed by the geobotanical-soil science faculty of the University of Moscow and the first five publication under the editorship of A. I. Popov (1971–1975) are the basis for this paper. The original papers are in Russian, still unavailable for most western scientists.The bog genetics was stratigraphically analyzed. The analysis revealed that the majority of the Northern bogs started in taiga forests. The peat in these areas is now 4–7 m deep. About 60% of the peat consists of the mixed (Sphagnum) fuscum type deposit. Peat type profiles are shown in Figure 4. The figure illustrates the different peat deposits in relation to depth as well as to surface pattern of strings and hollows.The surface vegetation shows the pattern typical for many northern peat bogs on very slightly inclined land: parallel strings of peat moss and Pinus trees alternating with hollows filled with rain water and hydrophytic Sphagna (Sph. dusenii, Sph. balticum). A cross section through this vegetation pattern is given in Figure 5. Details of the pattern: strings and hollows are given in Chapter 4 of the paper.The second chapter of this paper deals with regression phenomena in the vegetation development due to excessive water logging caused by the development of the strings. Under such conditions black water lakes are formed which grow in size through the erosive action of wind and waves on the expense of the peat moss surface.Bog development in the middle and northern Taiga zone of the biome are discussed in Section 3. The hydrology of this area is ruled by the seasonal fluctuation of water level. The amplitude of the Ob river amounts to 12 m with the amplitude of the tributaries ranging around 4–6 m. The annual flood is aggravated in spring by huge ice packages. The entire area is for extended periods one great lake which dissects into hundreds of thousands of little lakes during the low water season.In some parts of this area local drainage is responsible for the development of small forest patches. The crown cover in this forest is reported up to 50%; the species composition changes from Pinus sibirica, P. sylvestris, Picea spec. near the drainage creeks to Pinus sylvestris f. willkommii and Betula in the drained upland portions.In this area the general peat bog is eutrophic because of the high influence of the flood. The local development of oligotrophic raised bogs is frequent, however. These bogs are obviously a successional stage in series that leads eventually to a boreal forest.Section 5 deals with the vegetation typology of the entire area. Three different subdivisions of the Helobiome are distinguished, with several regional subdivisions in each. The principle for the biome division is the environmental change from oligotrophic water on the northern lower end of the watershed to the eutrophic water condition further south in the forest steppe zone. In the area of the southern eutrophic biome are forest islands Ryami and even the first salt soil patches noticeable especially in the northern steppe zone. This indicates the regional transition to the Halo-Helobiome. Some vegetational and floristic details for the subdivisions are summarized in this chapter.Supplement to H. Walter: The vegetation of Eastern Europe, North and Central Asia, 1974.Translated by: Stephen S. Talbot, Forest Management Institute, 396 Cooper Street, Ottawa, Ontario, Canada K1A OH3, and Runhild E. Eessell, 54 Spindle Road Hicksville, New York 11801, USA.
  相似文献   

5.
Question: This paper compares published palynological studies from coastal swamps containing the same suite of species. We ask the following questions: (1) does succession follow the same pathways in different swamp systems, or (2) at different times? If not, (3) how variable are the patterns and (4) what are the likely driving factors? Location: Great Barrier Island, Northern New Zealand. Methods: Eighteen pollen profile diagrams were studied from four estuarine wetlands, ranging from mangroves to swamp forest. Recognition of a transition between vegetation stages was by subjective consideration of the relative abundances of pollen of key indicator species at different depths in the sedimentary sequence. Results: A linear sequence of vegetation communities beginning with mangroves and followed by estuarine marsh communities composed of Juncus kraussii, Leptocarpus similis and Baumea juncea was recognised in almost all pollen diagrams. Further transitions, from Baumea to a terrestrial system of Leptospermum shrubland or Cordyline/Dacry‐carpus swamp forest, followed two main pathways associated with autogenic accumulation of peat and terrigenous sediment input respectively. At Kaitoke and Awana the marine/freshwater transition occurred before the arrival of humans on Great Barrier Island. At Whangapoua, increased sedimentation followed anthropogenic burning of adjacent forest, and this transition was faster and is still in progress. Conclusion: Palynology and current vegetation zonation patterns concur to demonstrate that the marine sedimentation phase of estuarine succession is predictable and linear. Baumea marks the transition to the freshwater phase, in which varied successional patterns are determined by interactions between hydrology, sediment input, and peat accumulation. Natural and human disturbances drive sedimentation rates, and interact with autogenic factors, to dictate vegetation transitions in these later stages. The intensive impact (mainly burning) during Polynesian times had a much greater effect on estuaries and swamps than the pre‐Polynesian natural processes, greatly accelerating plant succession.  相似文献   

6.
Question: Is ombrotrophic bog vegetation in an oceanic region of southwestern Sweden changing in the same direction over a five year period (1999 ‐ 2004) as northwest European bogs in the last 50 years, i.e. towards drier and more eutrophic vegetation? Location: The province of Halland, southwestern Sweden. Methods: Changes in species composition were monitored in 750 permanently marked plots in 25 ombrotrophic bogs from 1999 to 2004. Changes in species occurrences and richness were analysed and a multivariate statistical method (DCA) was used to analyse vegetation changes. Results: The species composition changed towards wetter rather than drier conditions, which is unlike the general pattern of vegetation change on bogs in northwestern Europe. Species typical of wetter site conditions including most Sphagnum species increased in abundance on the bogs until 2004. The total number of species per plot increased, mostly due to the increased species richness of Sphagnum species. Nitrogen‐demanding (eutrophic) species increased in occurrence. Conclusions: Ombrotrophic bog vegetation in an oceanic region in Sweden became wetter and was resilient to short‐term climatic shifts, after three years of below normal precipitation followed by several years with normal precipitation levels. Shifts towards more nitrogen demanding species were rapid in this region where the deposition levels have been high for several decades.  相似文献   

7.
Pollen records of Holocene sediment cores from the Costa Rican Cordillera de Talamanca (La Chonta bog, 2310 m and La Trinidad bog, 2700 m) show the postglacial development of the montane oak forest zone from ca. 9500 to 1500 yr BP. During the early Holocene (ca. 9500–700 yr BP), alder vegetation covered the La Chonta and La Trinidad bogs and their adjacent hills. The upper forest line is inferred to be at 2800–3000 m elevation. A Podocarpus-Quercus forest characterised the middle Holocene (ca. 7000–4500 yr BP). The upper forest line is located at >3000 m reaching the present-day altitudinal distribution. A Quercus forest characterised the late Holocene (ca. 4500–1500 yr BP). Compared to modern conditions, the early Holocene has similar average temperatures, but the moisture level was probably higher. Pollen evidence for the late Holocene indicates drier environmental conditions than today. In order to improve the paleoecological interpretation, we described the local vegetation and used moss samples as pollen traps at both montane bogs along strong soil moisture gradients.The Netherlands Centre for Geo-ecological Research, ICG  相似文献   

8.
Abstract. Soil seed bank and floristic diversity were studied in a forest of Quercus suber, a forest of Quercus canariensis and a grassland, forming a vegetation mosaic in Los Alcornocales Natural Park, southern Spain. The soil seed bank was estimated by the germination technique. In each community patch, diversity, woody species cover and herbaceous species frequency was measured. Three biodiversity components – species richness, endemism and taxonomic singularity – were considered in the vegetation and the seed bank. Forest patches had a soil seed bank of ca. 11 200–14 100 seed.m?2 and their composition had low resemblance to (epigeal) vegetation. The grassland patch had a more dense seed bank (ca. 31 800 seed.m?2) and a higher index of similarity with vegetation, compared with the forests nearby. The complete forest diversity was 71–78 species on 0.1 ha, including 12–15 species found only in the seed bank; the grassland species richness was higher (113 species on 0.1 ha). We discuss the role of soil seed banks in the vegetation dynamics and in the complete plant biodiversity of the mosaic landscape studied.  相似文献   

9.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

10.

Background and aims

Boreal mires are globally important carbon stores. In nutrient poor mires, i.e. bogs, vegetation is highly structured between hydrologically different microforms: hummocks, lawns and hollows. We studied whether the vegetation structure in four boreal bogs is reflected in the actinobacterial decomposer communities.

Methods

Vegetation was determined by projection cover of plant species. Actinobacteria were detected from peat profiles at depths of 0–20, 20–40 and 40–60 cm by molecular methods. The data was analysed by a hierarchical set of ordinations.

Results

The inter-bog variation in plant communities was insignificant, while the intra-bog differences (microforms) at each bog were highly significant. This variation was reflected in actinobacteria communities in the two upper peat layers. The deepest peat layer (40–60 cm) showed some inter-bog differences, possibly due to the different history of the bogs.

Conclusions

Our results show that the actinobacteria communities reflect the variation in bog vegetation, which in turn is tied to hydrological conditions. The possible alterations in the water level caused by changing climate are likely to cause predictable changes in vegetation and microbial communities in bog ecosystems.  相似文献   

11.
Questions: Is vegetation composition of ombrotrophic bogs with an undisturbed water regime resistant or sensitive to ongoing high atmospheric deposition and climatic changes? Location: The Sudeten Mountains (Czech Republic). Methods: Species composition of bryophytes and vascular plants was sampled in 25 permanent plots in suboceanic bogs of the Jizerské hory Mountains and in 26 permanent plots in subcontinental bogs of the Hrubý Jeseník Mountains. The permanent plots were established and first sampled in 1991. These plots were re‐sampled after 14 and 17 years, respectively. We also used historical vegetation plots (1947–1949; 1980) from the same localities in order to reveal possible changes that might start earlier. Water chemistry was analysed annually, usually three times a year. Compositional changes were analysed by PERMANOVA, β‐diversity changes by PERMDISP and other changes by t‐test and Fisher's exact test. Results: At the community level, no statistically significant changes were detected in permanent plots (PERMANOVA, PERMDISP), either in hollows or in hummocks, but the vegetation composition changed between the oldest (historical) and the newest data sets. At the level of functional groups, cover of Cyperaceae significantly decreased and cover of other herbs (excluding graminoids) and Sphagna increased in the Hrubý Jeseník Mountains, whereas no changes were detected in the Jizerské hory Mountains. Cover of ericoid dwarf shrubs has not changed in either area. At the level of particular species, the frequency of Sphagnum magellanicum, Carex limosa, Scheuchzeria palustris and Vaccinium myrtillus decreased, while the frequency of Straminergon stramineum, Sphagnum recurvum agg., Eriophorum angustifolium and Luzula sylvatica increased. These changes were more evident when recent and historical data were compared. Conclusions: When water regime is not affected, the bog vegetation seems to be rather resistant to high atmospheric deposition and climate fluctuation. A significant change of the species composition occurs only in the long‐term perspective. Particular species could, however, decrease or increase their frequencies more rapidly. For some of these species a positive or negative response to nitrogen availability was also found in other studies, whereas for other species further research is needed in order to separate the effects of atmospheric deposition and internal ecosystem dynamics.  相似文献   

12.
13.
Canadian wetlands: Environmental gradients and classification   总被引:1,自引:1,他引:0  
S. C. Zoltai  D. H. Vitt 《Plant Ecology》1995,118(1-2):131-137
The Canadian Wetland Classification System is based on manifestations of ecological processes in natural wetland ecosystems. It is hierarchical in structure and designed to allow identification at the broadest levels (class, form, type) by non-experts in different disciplines. The various levels are based on broad physiognomy and hydrology (classes); surface morphology (forms); and vegetation physiognomy (types). For more detailed studies, appropriate characterization and subdivisions can be applied. For ecological studies the wetlands can be further characterized by their chemical environment, each with distinctive indicator species, acidity, alkalinity, and base cation content. For peatlands, both chemical and vegetational differences indicate that the primary division should be acidic, Sphagnum-dominated bogs and poor fens on one hand and circumneutral to alkaline, brown moss-dominated rich fens on the other. Non peat-forming wetlands (marshes, swamps) lack the well developed bryophyte ground layer of the fens and bogs, and are subject to severe seasonal water level fluctuations. The Canadian Wetland Classification System has been successfully used in Arctic, Subarctic, Boreal and Temperate regions of Canada.  相似文献   

14.
The Blue Mountains water skink (Eulamprus leuraensis; Scincidae) is restricted to less than 40 fragmented swamp sites, all within the Blue Mountains and Newnes Plateau areas of New South Wales, Australia. Climate change is expected to increase fire frequency in the area, potentially degrading habitat quality for this endangered reptile. We quantified lizard abundances in 12 swamps using standardized surveys, and constructed a Global Information System (GIS) database to determine fire‐histories for each swamp since 1967. The abundance of Blue Mountains water skinks was negatively correlated with fire frequency, but not with time since fire. Indirect impacts of fire (mediated via shifts in vegetation density, moisture levels, prey availability and post‐fire predation) may be more important than direct effects in these cool, moist habitats. Although lizards were less common in swamps close to urban areas, and less common in frequently burnt areas, viable populations of this endangered reptile still persist even in anthropogenically disturbed swamps and in swamps that have experienced up to four fires in 20 years. Future research could usefully extend these analyses to other swamps in the locality, and explore the broader impacts of fire regimes on the distinctive flora and fauna of this threatened ecological community.  相似文献   

15.

Aim

Reconstruct the long‐term ecosystem dynamics of the region across an elevational gradient as they relate to climate and local controls. In particular, we (1) describe the dominant conifers' history; (2) assess changes in vegetation composition and distribution; and (3) note periods of abrupt change versus stability as means of better understanding vegetation responses to environmental variability.

Location

Greater Yellowstone Ecosystem (GYE; USA).

Time period

16.5 ka bp ‐present.

Major taxa studied

Juniperus, Picea, Abies, Pinus, Pseudotsuga.

Methods

The vegetation reconstruction was developed from 15 pollen records. Results were interpreted based on modern pollen–vegetation relationships estimated from a suite of regression‐based approaches.

Results

Calibrated pollen data suggest that late‐glacial vegetation, dominated by shrubs and Juniperus, lacks a modern counterpart in the area. Picea, Abies and Pinus expanded at 16 ka bp in association with postglacial warming and co‐occurred in mixed‐conifer parkland/forest after 12 ka bp . This association along with Pinus contorta forest, which was present after 9 ka bp , has persisted with little change at middle and high elevations to the present day. This stability contrasts with the dynamic history of plant communities at low elevations, where shifts between parkland, steppe and forest over the last 8,000 years were likely driven by variations in effective moisture and fire.

Main conclusions

The postglacial vegetation history of the GYE highlights the dynamic nature of mountain ecosystems and informs on their vulnerability to future climate change: (1) most of the conifers have been present in the area for >12,000 years and survived climate change by adjusting their elevational ranges; (2) some plant associations have exhibited stability over millennia as a result of nonclimatic controls; and (3) present‐day forest cover is elevationally more compressed than at any time in history, probably due to the legacy of the Medieval Climate Anomaly and the Little Ice Age.  相似文献   

16.
To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments (0 and 4 g N m−2 year−1) on the growth of four Sphagnum species from three geographically interspersed regions: S. fuscum, S. balticum (northern and central Sweden), S. magellanicum and S. cuspidatum (southern Sweden). We studied the growth and cover change in four combinations of these Sphagnum species during two growing seasons. Sphagnum height increment and production were affected negatively by high temperature and high N addition. However, the northern species were more affected by temperature, while the southern species were more affected by N addition. High temperature depressed the cover of the ‘wet’ species, S. balticum and S. cuspidatum. Nitrogen concentrations increased with high N addition. N:P and N:K ratios indicated P-limited growth in all treatments and co-limitation of P and K in the high N treatments. In the second year of the experiment, several containers suffered from a severe fungal infection, particularly affecting the ‘wet’ species and the high N treatment. Our findings suggest that global change can have negative consequences for the production of Sphagnum species in bogs, with important implications for the carbon sequestration in these ecosystems.  相似文献   

17.
Climate and geomorphy arc the main factors of the formation of forest bogs in Hingganling and changbaishan. The bogs are both multiple in types and widespread in distribution. There exist not only the type of lower bog, but also that of middle bog and raised bog. They are chiefly distributed in the alluvial flat or valley and in the watershed. The succession process of forest bog is generalized into two kinds: (1) The formation of forest bogs as a result of the natural succession of forest vegetation under the influence of natural conditions. (2) The formation of forest bogs as a result of the bogginess in the vicinity of forestland.  相似文献   

18.
ABSTRACT Some species of mature‐forest‐nesting songbirds use regenerating clearcuts and forested wetlands during the postfledging period (between nesting and migration). Relatively dense vegetation structure and abundant food resources in non‐mature‐forest cover types have been hypothesized to explain this phenomenon. We examined the relative importance of vegetation structure and invertebrate availability on use of nonnesting cover types by adult and hatch‐year Ovenbirds (Seiurus aurocapilla) and American Redstarts (Setophaga ruticilla) during the postfledging period of 2009 in northern Minnesota. We used mist nets to sample bird use of forested wetlands and regenerating clearcuts of three age groups: 1–6, 7–12, and 16–19 yr after harvest. We modeled captures of birds using vegetation characteristics and invertebrate availability sampled around nets as explanatory variables. For all birds studied, captures were best explained by food availability and secondarily by vegetation characteristics including litter depth and woody debris for Ovenbirds and canopy height for American Redstarts. Shrub‐level invertebrate availability received a cumulative weight of 0.74–0.99 in Akaike's information criterion corrected ranked models for adult and hatch‐year birds of both species. Vegetation density and variation in vegetation density explained almost no variation in captures of either species. We conclude that both invertebrate availability and some vegetation characteristics influence use of nonnesting cover types by Ovenbirds and American Redstarts during the postfledging period, but that invertebrate availability is generally the stronger predictor of that use.  相似文献   

19.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

20.
Aim The spatio‐temporal dynamics of dry evergreen forest patches in the savanna biome of the Kagera region (north‐western Tanzania) are largely unknown owing to a lack of pollen and macrofossil evidence. Our aims were to reconstruct local‐scale shifts of the forest–savanna boundary in order to determine whether the forests have been expanding or retreating on a centennial and millennial time‐scale. Location The Kagera region of north‐western Tanzania, East Africa. Methods The vegetation reconstruction was based on analysing δ13C signatures in soils along a transect spanning both C4 open savanna and C3 forest vegetation. Furthermore, we fractionated soil organic matter (SOM) according to density and chemical stability to analyse δ13C values of soil fractions with distinct radiocarbon ages. Results We found sharp changes in δ13C signatures in bulk SOM from the forest to the savanna, within a few metres along the transect. The forest soil profiles carried a persistent C3‐dominated signature. Radiocarbon dating of the oldest, most recalcitrant forest soil fraction yielded a mean age of 5500 cal. yr bp , demonstrating that the forest has existed since at least the mid‐Holocene. The savanna sites showed a typical C4 isotopic signature in SOM of topsoils, but subsoils and more recalcitrant SOM fractions also contained signals of C3 plants. The dense soil fraction (ρ > 1.6 g cm?3) carrying a pure C4 label had a mean age of c. 1200 cal. yr bp , indicating the minimum duration of the dominance of grass vegetation on the savanna site. At the forest edge, the older C4 grass signature of SOM has steadily been replaced by the more negative δ13C fingerprint of the forest trees. As this replacement has occurred mainly in the 10‐m‐wide forest–savanna ecotone over the last c. 1200 years, the forest expansion must be very slow and is very likely less than 15 m century?1. Main conclusions Our results suggest that forest patches in the Kagera savanna landscape are very stable vegetation formations which have persisted for millennia. During the last millennium, they have been expanding very slowly into the surrounding savanna at a rate of less than 15 m century?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号