共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Rannem K. Ladefoged E. Hylander J. Hegnhøj S. Jarnum 《Biological trace element research》1993,39(1):81-90
Severe selenium (Se) depletion was found in nine patients receiving long-term home parenteral nutrition because of short bowel syndrome. Plasma Se ranged from 0–0.51 (median 0.21 μmol/L) and erythrocyte Se ranged from 0.7–2.6 (median 1.8 μmol/gHgb), which was significantly lower than in the controls. Glutathione peroxidase (GSHPx) in plasma and erythrocytes was also decreased. After bolus injections with 200 μg Se/d in the form of sodium selenite for 4 mo, followed by 100 μg/d for 8 mo, plasma Se increased to values slightly but significantly higher than in the controls. Erythrocyte Se reached normal levels in most of the patients after 4 mo substitution, but it remained lower than in the controls. Following Se supplementation, plasma and erythrocyte GSHPx did not differ between patients and controls. These data suggest that all patients receiving long-term parenteral nutrition because of short bowel syndrome should receive at least 100 μg sodium selenite/d when given as bolus injections to avoid Se depletion. 相似文献
2.
In recent years the selenium (Se) intake of the human population of the UK has shown a marked decline from 60 μg/d in 1978 to around 30 μg/d in 1990 owing largely to a significant reduction in the importation of North American wheat for bread-making fluor. Other countries (Finland, for example) in similar situations have instituted fertilization programs in order to raise cereal Se concentrations and thus boost dietary intakes. An alternative approach would be to increase the Se concentration of carcass meat by supplementation of meat animals for a limited period prior to slaughter. A trial was set up with store lambs to evaluate this approach. Sixteen Scottish Blackface lambs were stratified according to live weight and then randomly allocated to one of four treatments: unsupplemented, or 3.5, 7, or 10.5 mg. Se/head/wk. After 14 wk, the lambs were sacrificed and samples of shoulder and thigh muscle, liver, and kidney were obtained for analysis. All three treatments effected an increase in whole blood glutathione peroxidase (GSH-Px) and plasma Se concentrations over controls. Shoulder, thigh, and liver Se exhibited a dose-response relationship to treatment, but kidney Se concentrations were unaffected by treatment. Muscle and some organ meat Se concentrations can therefore be increased by supplementation and could contribute to increased human dietary intakes of the element. 相似文献
3.
To investigate the role of chronic oxidative stress in MPTP neurotoxicity, C57BL mice were maintained 6–8 weeks on diets deficient in nutrients essential to cellular antioxidant defenses, selenium (Se) and alpha-tocopherol (vit E), and the effects on tissue antioxidant status and MPTP toxicity were evaluated relative to controls on supplemented diets. Activities of the major antioxidant enzymes, glutathione peroxidase (GPx), catalase, and superoxide dismutase, and levels of malondialdehyde as a marker for oxidative stress, were measured in brain, lung, liver and blood. Caudate depletion of dopamine and its metabolites served as a measure of MPTP neurotoxicity. For mice on the Se deficient diet, levels of the selenoenzyme GPx decreased from 50% in brain to 90% in blood. No compensatory changes in the activities of the other antioxidant enzymes were observed and addition of vit E to the diet did not alter antioxidant enzyme activities or malondialdehyde levels. In animals not treated with MPTP, the Se deficient diet significantly increased malondialdehyde only in liver. No protective effect of the antioxidant supplements against caudate depletion of dopamine and its metabolites was observed. However, malondialdehyde levels were increased in the brains of MPTP treated mice on the low Se diets, suggesting the possibility of secondary oxidative damage to tissues accompanying the destruction of substantia nigra neurons by MPTP. 相似文献
4.
Marie J. Richard Veronique Ducros Michel Rorêt Josiane Arnaud Charles Coudray Michèle Fusselier Alain Favier 《Biological trace element research》1993,39(2-3):149-159
In six chronic dialyzed uremic patients, an intravenous sodium selenite (Se 50 μg during 5 wk and then 100 μg) and zinc gluconate (Zn 5 mg) supplementation was performed during 20 wk at each dialysis session three times weekly. Before supplementation, plasma Se and Zn, plasma and erythrocytes (RBC) antioxidant metalloenzymes glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly decreased, whereas lipid peroxidation (as thiobarbituric acid reactants TBARs) was increased. To obtain a significative change in plasma selenium, we had to use an Se dose of 100 μg/dialysis session. Then, treatment-increased plasma Se (from 0.58 ±0.09 to 0.89±0.16 μmol/L) led to a repletion of RBC-GPX (from 29.6±6 to 43±5.8 U/g Hb) and increased plasma GPX levels (from 62±13 to 151±43 U/L). Plasma Zn and RBC-SOD did not vary significantly. The change of TBARs was not observed between wk 1 and 4. They decreased significantly between wk 4 (4.80±0.21μmol/L) and wk 20 (4.16±0.26 μmol/L). We noted a low correlation between TBARs and plasma GPX. A strong correlation was observed between Se and plasma GPX. The reversal of Se deficiencies should reduce oxidative damage observed in these patients. 相似文献
5.
Gergana Deevska Manjula Sunkara Claudia Karakashian Benjamin Peppers Andrew J. Morris Mariana N. Nikolova-Karakashian 《Journal of lipid research》2014,55(10):2041-2052
In hepatocytes, aging-associated decline in GSH has been linked to activation of neutral SMase (nSMase), accumulation of bioactive ceramide, and inflammation. In this study, we seek to test whether dietary supplementation with the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTC), would correct the aging-associated differences in hepatic GSH, nSMase, and ceramide. Young and aged mice were placed on a diet that either lacked sulfur-containing amino acids (SAAs) or had 0.5% OTC for 4 weeks. Mice fed standard chow were used as an additional control. SAA-deficient mice exhibited significant aging-associated differences in hepatic GSH, GSH/GSSG, ceramide, and nSMase. C24:1 ceramide, the major ceramide species in liver, was affected the most by aging, followed by the less abundant C16:0 ceramide. OTC supplementation eliminated the aging-associated differences in hepatic GSH and GSH/GSSG ratio. Surprisingly, however, instead of decreasing, the nSMase activity and ceramide increased in the OTC-fed mice irrespective of their age. These effects were due to elevated nSMase-2 mRNA and protein and appeared to be direct. Similar increases were seen in HepG2 cells following treatment with OTC. The OTC-fed aged mice also exhibited hepatic steatosis and triacylglyceride accumulation. These results suggest that OTC is a potent stimulant of nSMase-2 expression and that there may be unanticipated complications of OTC supplementation. 相似文献
6.
Effects of long-term selenium yeast supplementation on selenium status studied in the rat 总被引:1,自引:0,他引:1
Dietrich Behne Dorothea Alber Antonios Kyriakopoulos 《Journal of trace elements in medicine and biology》2009,23(4):258-264
To investigate the selenium status during long-term dietary supply of selenium yeast, 30-day-old male rats were fed for 379 days a methionine-adequate low-selenium diet supplemented with 0.2 mg Se/kg (selenium-adequate diet) or 1.5 mg Se/kg (high-selenium diet) in the form of selenium yeast that contained 60% of the element as l-selenomethionine. Their selenium load was determined at several intervals by neutron activation analysis of the selenium concentrations in the main selenium body pools, skeletal muscle and liver. After 64 days the tissue selenium concentrations plateaued in both groups and then stayed at that level. Compared with the selenium-adequate group, elevated tissue selenium concentrations were found in the high-selenium group, but the increase by a factor of 3.5 in the muscle and by a factor of 2.3 in the liver was smaller than the 7.5-fold increase in the selenium intake. In the selenium-adequate group about 50% of the muscle selenium and 30% of the liver selenium and in the high-selenium group about 85% of the muscle selenium and 70% of the liver selenium were estimated to be present in non-selenoprotein forms. During selenium depletion the liver glutathione peroxidase activity in the high-selenium group remained unaffected for 4 weeks and then decreased more slowly than that in the selenium-adequate group. From these results it can be concluded that selenium incorporated from the selenium yeast diet into non-selenoprotein forms can serve as an endogenous selenium source to maintain selenoprotein levels in periods of insufficient selenium supply. 相似文献
7.
Ziegler DR Ribeiro LC Hagenn M Siqueira IR Araújo E Torres IL Gottfried C Netto CA Gonçalves CA 《Neurochemical research》2003,28(12):1793-1797
Ketogenic diets have been used in the treatment of refractory childhood epilepsy for almost 80 years; however, we know little about the underlying biochemical basis of their action. In this study, we evaluate oxidative stress in different brain regions from Wistar rats fed a ketogenic diet. Cerebral cortex appears to have not been affected by this diet, and cerebellum presented a decrease in antioxidant capacity measured by a luminol oxidation assay without changes in antioxidant enzyme activities—glutathione peroxidase, catalase, and superoxide dismutase. In the hippocampus, however, we observed an increase in antioxidant activity accompanied by an increase of glutathione peroxidase (about 4 times) and no changes in lipoperoxidation levels. We suggest that the higher activity of this enzyme induced by ketogenic diet in hippocampus might contribute to protect this structure from neurodegenerative sequelae of convulsive disorders. 相似文献
8.
Mario Calomme Jean Vanderpas Baudouin François Micheline Van Caillie-Bertrand Nicole Vanovervelt Christian Van Hoorebeke Dirk Vanden Berghe 《Biological trace element research》1995,47(1-3):349-353
Type I 5′-deiodinase was recently characterized as a selenocysteine-containing enzyme in humans and other mammals. Up to now, the effect of selenium (Se) supplementation on thyroid hormone metabolism in humans has only been reported in the very peculiar nutritional environment of Central Africa, where combined severe iodine and Se deficiency occurs. In this study, a group of phenylketonuria subjects with a low selenium status, but a normal iodine intake were supplemented with selenium to investigate changes in their thyroid hormone metabolism. After 3 wk of selenium supplementation (1 μg/kg/d), both the concentrations of the prohormone thyroxine (T4) and the metabolic inactive reverse triiodothyronine (rT3) decreased significantly. Clinically, the phenylketonuria subjects remained euthyroid before and after selenium supplementation. The individual changes of plasma Se and glutathione peroxidase activity were closely associated with individual changes of plasma T4 and rT3. 相似文献
9.
《Free radical research》2013,47(1-3):137-144
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells. 相似文献
10.
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.
Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells. 相似文献
Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells. 相似文献
11.
《Free radical research》2013,47(5-6):343-361
The primary structure of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was partially elucidated by sequencing peptides obtained by cyanogen bromide cleavage and tryptic digestion and by isolating and sequencing corresponding cDNA fragments covering about 75% of the total sequence. Based on these data PHGPx can be rated as a selenoprotein homologous, but poorly related to classical glutathione peroxidase (GPx). Peptide loops constituting the active site in GPx are, however, strongly conserved in PHGPx. This suggests that the mechanism of action involving an oxidation/reduction cycle of a selenocysteine residue is essentially identical in PHGPx and GPx. 相似文献
12.
R. Schuckelt R. Brigelius-Floh M. Maiorino A. Roveri J. Reumkens W. Strabburger F. Ursini B. Wolf L. Floh 《Free radical research》1991,14(5):343-361
The primary structure of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was partially elucidated by sequencing peptides obtained by cyanogen bromide cleavage and tryptic digestion and by isolating and sequencing corresponding cDNA fragments covering about 75% of the total sequence. Based on these data PHGPx can be rated as a selenoprotein homologous, but poorly related to classical glutathione peroxidase (GPx). Peptide loops constituting the active site in GPx are, however, strongly conserved in PHGPx. This suggests that the mechanism of action involving an oxidation/reduction cycle of a selenocysteine residue is essentially identical in PHGPx and GPx. 相似文献
13.
The interaction of selenium with methylmercury was investigated in brain of animals labeled with 75SeO32? and CH3203Hg+. Brains were fractionated into subcellular components and the cytosol was further fractionated by chromatography on Sephadex G-150 and G-200. The main result of these studies was evidence suggesting a shift of 75Se from the cytosol to the mitochondrial fraction in brain when CH3Hg+ was given. Concurrent equimolar (10 μmoles/kg) selenite injections increased the uptake of Hg but did not alter 203Hg distribution in brain. Changing the dose of CH3Hg+ from 1 to 38 μmoles/kg had little effect on Hg uptake (% of dose per g). Gel filtrations on Sephadex G-150 and G-200 revealed that 203Hg in cytosol followed a pattern more closely related to protein (A280) than to 75Se, although a considerable portion of both isotopes eluted with proteins in the void volume. Assays of whole brain homogenates revealed a slight reduction in glutathione peroxidase activity in CH3Hg+-treated rats which was not seen when equimolar selenite was injected with the CH3Hg+. 相似文献
14.
15.
Bogdan Dolezych Elzbieta Szulinska 《Journal of trace elements in medicine and biology》2003,17(2):133-137
The aim of this study was to show the direct effect of selenium on glutathione peroxidase (GSH-Px) activity and GSH/GSSG concentrations in 3- and 6-month-old mice. An ozone-oxygen mixture was used to provoke an oxygen stress. To measure the Se-effect mice were gavaged with sodium selenite. GSH-Px activity and total glutathione concentrations were determined in serum and in the postnuclear fraction of liver and lungs. Additionally glutathione concentrations were determined in whole blood. Both ozone and selenium, administered separately, reduced GSH-Px activity in lungs of 6-month-old animals, while in young mice an opposite effect of Se was observed. Ozone administered jointly with Se did not influence GSH-Px activity in 6-month-old mice, while in young, 3-month-old mice, a stimulatory effect in lungs was observed. There were no significant changes in GSH-Px activity in the liver of 6-month-old mice, but the stimulatory effect occurred in young mice treated with Se and Se & ozone jointly. In young mice, ozone (also ozone with Se) augmented glutathione concentrations. The response to ozone and selenium strictly depended on age and the antagonism between selenium and ozone was observed only in a few cases. 相似文献
16.
HuanQing Dai Frank W. Edens R. Michael Roe 《Journal of biochemical and molecular toxicology》1996,11(2):85-96
Cytosolic glutathione S-transferase (GST) activities toward 1-chloro-2,4-dinitro-benzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EA), 1,2-epoxy-3-(p-nitrophenoxyl)propane (EPNP), trans-4-phenyl-3-buten-2-one (t-PBO), δ3-androstene-3,17-dione (ASD) and trans-stilbene oxide (t-SO); cytosolic glutathione peroxidase activity toward cumene hydroperoxide (CuOOH); and microsomal GST activity toward CDNB were examined in liver, kidney, brain, and lung of adult male and female Japanese quail. In all cases, the renal specific activity per milligram protein was higher than the hepatic activity and was the highest among the four tissues examined. No consistent sex differences in GST activity were observed. The GSTs were purified from quail liver cytosol by S-hexylglutathione and glutathione affinity chromatography. Total GSTs eluted from the S-hexylglutathione affinity column were further separated by chromatofocusing, and the microheterogeneity of the GST isozymes was shown by high-resolution native isoelectrofocusing (IEF) in polyacrylamide slab gels and by SDS-PAGE. Five subunits were identified: QL1 (30.5 kDa), QL2 (27.2 kDa), QL3a (26.8 kDa), QL3b (26.5 kDa), and QL4 (25.5 kDa). Western blot analysis revealed that QL1 and QL2 reacted with antibodies raised against the rat Mu class GSTs (Yb1 and Yb2), and QL3a and QL3b reacted with those raised against the Alpha class (rat Ya and mouse a). Substrate specific activity of each isoform was determined with CDNB, DCNB, CuOOH, EA, t-PBO, ASD, and t-SO. QL3a and QL3b have high reactivity toward CuOOH, while QL1 and QL2 showed high activity toward t-SO. The N-terminal amino acid sequence of QL2 was identical to that of the chicken Mu class GST subunit CL2. However, no sequence was obtained with QL1 due to possible N-terminal blockage. © 1996 John Wiley & Sons, Inc. 相似文献
17.
《Free radical research》2013,47(9):1076-1081
AbstractBinge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage. 相似文献
18.
Enrico Casalone Carmine Di Ilio Giorgio Federici Mario Polsinelli 《Antonie van Leeuwenhoek》1988,54(4):367-375
Total glutathione content, glutathione peroxidase, glutathione transferase and glutathione reductase activities have been measured in 12 species of yeasts. All the strains tested contained glutathione, though in different amounts, as well as the above mentioned enzymes. To discriminate between the selenium-dependent and the selenium-independent form, glutathione peroxidase activity has been measured with both H2O2 and cumene hydroperoxide. Rhodotorula glutinis appeared to be the only strain in which the selenium-dependent form was not found, but this yeast exhibited the highest level of selenium-independent glutathione peroxidase activity as compared to the other strains. 相似文献
20.
In mice, GPX5 is a secreted protein abundantly synthesized by the caput epididymidis. The protein is secreted as early as the initial segment of the caput and is found subsequently associated with the sperm plasma membrane in a sub-acrosomic localization. We show here that GPX5 is present in the caput and cauda epididymides lumens in three different locations: either free as a soluble protein in the caput epididymal fluid, weakly bound to caput sperm membranes, or, finally, associated to lipid-containing structures conferring to the protein a protective effect against proteolytic digestions. Within the cauda epididymidis, the amount of free GPX5 is low compared to the caput and the association with sperm membranes proved to be more solid. In both caput and cauda sperm samples, the association of GPX5 with the sperm membrane protects GPX5 from proteolytic cleavages. Protection against proteolytic digestions can be overcome by physical treatments of epididymal fluid and sperm samples such as ultrasounds or very acidic pH. These data suggest that complex phenomena and structures participate in the transfer and binding of the caput-secreted GPX5 protein to the sperm plasma membrane. 相似文献