首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The excretory duct of pyriform glands in Araneus diadematus is connected to the secretory sac through an intermediary cell ring. Apices of these cells bear thick, long microvilli and cytoplasmic extensions containing microtubules in bundles, some of which are derived from normal basal bodies. These finger-like extensions lie between the cuticular intima and the secretory product; they are thought to protect the intima and to initiate moulding of the silk thread. Structural features of the duct cells suggest that the latter play a role in the control of the water content of the silk glue which is restricted to the last portion of the duct where numerous nerve endings are inserted between cells. It is evident that duct structure and chemical and physical characteristics of silk are correlated in all spider silk glands.  相似文献   

3.
【目的】蟋螽是直翅目中唯一具有吐丝筑巢行为的类群。本研究旨在探讨蟋螽丝腺的结构特点。【方法】应用解剖学观察、免疫荧光、苏木精-伊红染色、PAS苏木精染色、扫描电镜和透射电镜等方法从细胞水平对黑缘烟蟋螽Capnogryllacris nigromarginata丝腺的显微与超微结构进行了观察。【结果】黑缘烟蟋螽丝腺由导管和腺泡构成。腺泡由鞘细胞延伸形成的结缔组织鞘包围。腺泡的主体有4种细胞,分别为Ⅰ型分泌细胞、Ⅱ型分泌细胞、围细胞和腔细胞。Ⅰ型和Ⅱ型分泌细胞为大的腺细胞,形状不规则。分泌细胞细胞核很大,胞质内有大量的内质网和分泌颗粒。Ⅰ型分泌细胞靠近腺泡中心,PAS-苏木精染色表明Ⅰ型分泌细胞内含糖蛋白,Ⅱ型分泌细胞在腺泡外周,位于Ⅰ型分泌细胞与围细胞或结缔组织鞘之间。腔细胞分散在分泌细胞之间,包围形成胞外运输分泌物的通道。围细胞与鞘细胞接触,具有由细胞膜内陷形成的微绒毛腔,胞质内有大量的线粒体。围细胞微绒毛腔与腔细胞包围的细胞外运输通道相连,分泌细胞分泌的颗粒聚集在分泌细胞和胞外运输通道之间的连接处,并将分泌物排出至胞外运输通道。多个腺泡的胞外运输通道汇集到由单层细胞组成的丝腺导管。单层导管细胞靠近管腔外围具有规则排列的质膜内陷和大量伸长的线粒体;靠近管腔的一侧具连续的细胞膜突起,在导管壁的表皮下紧密排列。【结论】黑缘烟蟋螽丝腺分泌细胞分为Ⅰ型分泌细胞和Ⅱ型分泌细胞。分泌物质产生及分泌过程依次经过分泌细胞、腔细胞包围的胞外通道、分支导管、总导管和唾窦。其中在腺泡细胞之间,分泌物向外运输过程中,围细胞微绒毛腔的微丝束可能对分泌物的外排提供推动力。  相似文献   

4.
This study reports the anatomy, histology, and ultrastructure of the male Mullerian gland of the caecilian Uraeotyphlus narayani, based on dissections, light microscopic histological and histochemical preparations, and transmission electron microscopic observations. The posterior end of the Mullerian duct and the urinogenital duct of this caecilian join to form a common duct before opening into the cloaca. The boundary of the entire gland has a pleuroperitoneum, followed by smooth muscle fibers and connective tissue. The Mullerian gland is composed of numerous individual tubular glands separated from each other by connective tissue. Each gland has a duct, which joins the central Mullerian duct. The ducts of the tubular glands are also surrounded by abundant connective tissue. The tubular glands differ between the column and the base in regard to the outer boundary and the epithelial organization. The basement membrane of the column is so thick that amoeboid cells may not penetrate it, whereas that around the base of the gland is thin and appears to allow migration of amoeboid cells into and out of the basal aspect of the gland. The epithelium of the column has nonciliated secretory cells with basal nuclei and ciliated nonsecretory cells with apical nuclei. In the epithelium of the base there are secretory cells, ciliated cells, and amoeboid cells. The epithelium of ducts of the tubular glands is formed of ciliated dark cells and microvillated light cells. The epithelium of the central duct is formed of ciliated dark cells also possessing microvilli, ciliated light cells also possessing microvilli, and microvillated light cells that lack cilia. It is regressed during March to June when the testis lobes are in a state of quiescence. The Mullerian gland is active in secretion during July to February when the testis is active in spermatogenesis.  相似文献   

5.
N.R. Price  S. Hunt 《Tissue & cell》1976,8(2):217-228
The ventral pedal gland in the foot of the mature female whelk Buccinum undatum L. consists of a shallow pouch containing a layer of elongated cells which partially penetrate a basement membrane overlying layers of smooth muscle. This glandular epithelium contains acid mucopolysaccharide cells, ciliated and interstitial cells as well as the upper parts of a new type of subepidermal gland cell. These gland cells consist of an elongated extracellular tubular duct formed by an invagination of the cell membrane and lined by numerous microvilli. Into this duct are discharged packets of a densely staining secretion. The secretion packets are produced in Golgi regions around the nuclei of the cells and are passed up through the cell to the base of the duct through or along an extensive assemblage of microtubules. The secretion packets show organized internal structure and may contain aromatic aldehydes and protein associated with the sclerotization of the egg capsules, which pass through the gland after leaving the genital tract.  相似文献   

6.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

7.
Pholcus phalangioidesdoes not possess receptacular seminis. The uterus externus (genital cavity) itself functions as a sperm storage structure. Two accessory glands are situated in the dorsal part of the uterus externus; they discharge their secretory product into the genital cavity. The secretion is considered to serve primarily as a matrix for sperm storage, i.e. to keep the spermatozoa in a fixed position. The accessory glands consist of numerous glandular units, each being composed of four cells: two secretory cells are always joined and surrounded twice by an inner and an outer envelope cell. Both envelope cells take part in forming a cuticular ductule that leads from the secretory cells to the pore plates of the uterus externus. The inner envelope cell produces the proximal part of the canal close to the microvilli of the secretory cells, whereas the outer envelope cell produces the distal part of the canal leading to the pore plate. Close to the pore the latter exhibits prominent microvilli that might indicate additional secretory activity.  相似文献   

8.
Summary Kidneys of adult male and female lizards were studied by electron microscopy, in order to understand the ultrastructure of the collecting duct and a differentiated part thereof, the sexual segment, which is an important accessory sexual organ. First portion of sexual segment in males: The cells are filled with large secretory granules of a wide range of opacities. The granular endoplasmic reticulum is abundant; basal formations of superimposed flat cisternae are frequent. Distended vesicles and microvesicles prevail in the supranuclear, well developed Golgi apparatus. Evidences indicate that secretion of these cells is holocrine. Second portion of sexual segment in males: All of the secretory granules are apical in location and relatively electron-opaque; they show a denser core. This core is formed by a substance which, after lying in contact with ribosomes, enters the secretory vesicles of the highly developed Golgi apparatus. A lighter substance is then condensed around it. The secretion of the granules is merocrine. The granular endoplasmic reticulum is very abundant in these cells, but basal ergastoplasmic formations are lacking. Sexual segment in females: The cells show features similar to those of the male first portion, but they are smaller. Undifferentiated collecting duct: Most of the cells are mucigenic. They have small ovoid, apical secretory granules. The density of the granules varies from cell to cell; when they are electron-lucent, they exhibit laminar or dotted opaque figures. Moderately developed Golgi apparatus and granular endoplasmic reticulum, as well as elongated mitochondria, occur in mucigenic cells. Intercalated among the latter are non-secretory cells. They have very abundant mitochondria, numerous microvilli, many pinocytic and smooth-membrane vesicles, whereas the organelles participating in synthetic processes are poorly developed; their function is most likely related to active solute transport.  相似文献   

9.
The salivary glands of two species of Zoraptera, Zorotypus caudelli and Zorotypus hubbardi, were examined and documented mainly using transmission electron microscopy (TEM). The results obtained for males and females of the two species are compared and functional aspects related to ultrastructural features are discussed. The salivary glands are divided into two regions: the secretory cell region and the long efferent duct, the latter with its distal end opening in the salivarium below the hypopharyngeal base. The secretory region consists of a complex of secretory cells provided with microvillated cavities connected by short ectodermal ducts to large ones, which are connected with the long efferent duct. The secretory cell cytoplasm contains a large system of rough endoplasmic reticulum and Golgi apparatus producing numerous dense secretions. The cells of the efferent duct, characterized by reduced cytoplasm and the presence of long membrane infoldings associated with mitochondria, are possibly involved in fluid uptaking from the duct lumen.  相似文献   

10.
Social insects have numerous exocrine glands, but these organs are understudied in termites compared to hymenopterans. The tarsomere and distal tibial glands of the termites Heterotermes tenuis, Coptotermes gestroi and Silvestritermes euamignathus were investigated by scanning and transmission electron microscopy. Pore plates are visible in scanning micrographs on the distal tibial surfaces and on the ventral surface of the first and second tarsomeres of workers of H. tenuis and C. gestroi. In contrast, workers of S. euamignathus have isolated pores spread throughout the ventral surfaces of the first, second, and third tarsomeres and the distal tibia. In all three species each pore corresponds to the opening of a class-3 secretory unit, composed of one secretory and one canal cell. Clusters of class-3 glandular cells are arranged side by side underneath the cuticle. The main characteristics of these exocrine glands include their presence on all the legs and the electron-lucent secretion in the secretory cells. Possible functions of these glands are discussed.  相似文献   

11.
Termites have developed many exocrine glands, generally dedicated to defence or communication. Although a few of these glands occur in all termite species, or represent synapomorphies of larger clades, others are morphological innovations of a single species, or a few related species. Here, we describe the nasus gland, a new gland occurring at the base of the nasus of Angularitermes soldiers. The nasus gland is composed of class 1, 2, and 3 secretory cells, a rare combination that is only shared by the sternal and tergal glands of some termites and cockroaches. The ultrastructural observations suggest that the secretion is produced by class 2 and 3 secretory cells, and released mostly by class 3 cells. The base of the nasus has a rough appearance due to numerous pits bearing openings of canals conducting the secretion from class 3 secretory cells to the exterior. We tentatively assign a defensive function to the nasus gland, although further research is needed to confirm this function. Although the gland is described only from species of Angularitermes, other genera of Nasutitermitinae also present a rough nasus base, suggesting the presence of a similar, possibly homologous, gland.  相似文献   

12.
Anatomy and ultrastructure of prosomal salivary glands in the unfed water mite larvae Piona carnea (C.L. Koch, 1836) were examined using serial semi-thin sections and transmission electron microscopy. Three pairs of alveolar salivary glands shown are termed lateral, ventro-lateral and medial in accordance with their spatial position. These glands belong to the podocephalic system and are situated on the common salivary duct from back to forth in the above mentioned sequence. The arrangement of the medial glands is unusual because they are situated one after another on the medial (axial) body line, therefore they are termed anterior and posterior medial glands. The secretory duct of the anterior medial gland mostly turns right, and the duct of the posterior gland turns left. The salivary glands are located in the body cavity partly inside the gnathosoma and in the idiosoma in front of the brain (synganglion). Each gland is represented by a single acinus (alveolus) and is composed of several cone shaped secretory cells arranged around the large central (intra-acinar) cavity with the secretory duct base. The cells of all glands are filled with secretory vesicles of different electron density. The remaining cell volume is occupied by elements of rough endoplasmic reticulum, and the membrane enveloping vesicles may have ribosomes on its external surface. Large nuclei provided with large nucleoli occupy the basal cell zones. The pronounced development of the prosomal salivary glands indicates their important role in extra-oral digestion of water mite larvae.  相似文献   

13.
The pygidial defense glands of the Steninae consist of two big (r1) and two smaller (r2) secretion filled sac-like reservoirs with associated secretory tissues and basal eversible membrane structures. The secretion is made up of deterrent and antimicrobial alkaloids stored in r1 as well as terpenes in r2. The gland cells filling r1 form a band shaped secretory tissue (g1) in an invagination of the reservoir membrane. The content of r2 is secreted by a tissue (g2) surrounding the efferent duct of r1 opposite to r2. In both gland tissues the secretion is produced in type IIIt gland cells and accumulates in an extracellular cavity surrounded by numerous microvilli of the gland cell membrane. After exocytosis the secretion enters an epicuticular duct and is transported to the corresponding reservoir via a conducting canal enclosed in at least one canal cell. While the structure of g1 is very similar in all species of the Steninae, g2 is often reduced. This reduction of the system r2/g2 is accompanied by a decreasing amount of terpenes in the total secretion and could be of interest for phylogenetic studies in the subfamily of the Steninae.  相似文献   

14.
Summary The salt gland in Tamarix is a complex of eight cells composed of two inner, vacuolate, collecting cells and six outer, densely cytoplasmic, secretory cells. The secretory cells are completely enclosed by a cuticular layer except along part of the walls between the collecting cells and the inner secretory cell. This non-cuticularized wall region is termed the transfusion are (Ruhland, 1915) and numerous plasmodesmata connect the inner secretory cells with the collecting cells in this area. Plasmodesmata also connect the collecting cells with the adjacent mesophyll cells.There are numerous mitochondria in the secretory cells and in different glands they show wide variation in form. In some glands wall protuberances extend into the secretory cells forming a labyrinth-like structure; however, in other glands the protuberances are not extensively developed. Numerous small vacuoles are found in some glands and these generally are distributed around the periphery of the secretory cells in association with the wall protuberances. Further, an unusual structure or interfacial apparatus is located along the anticlinal walls of the inner secretory cells. The general structure of the gland including the cuticular encasement, connecting plasmodesmata, interfacial apparatus, and variations in mitochondria, vacuoles, and wall structures are discussed in relation to general glandular function.  相似文献   

15.
The unusual idiosomal glands of a water mite Teutonia cometes (Koch 1837) were examined by means of transmission and scanning electron microscopy as well as on semi-thin sections. One pair of these glands is situated ventrally in the body cavity of the idiosoma. They run posteriorly from the terminal opening (distal end) on epimeres IV and gradually dilate to their proximal blind end. The terminal opening of each gland is armed with the two fine hair-like mechanoreceptive sensilla (‘pre-anal external’ setae). The proximal part of the glands is formed of columnar secretory epithelium with a voluminous central lumen containing a large single ‘globule’ of electron-dense secretory material. The secretory gland cells contain large nuclei and intensively developed rough endoplasmic reticulum. Secretory granules of Golgi origin are scattered throughout the cell volume in small groups and are discharged from the cells into the lumen between the scarce apical microvilli. The distal part of the glands is formed of another cell type that is not secretory. These cells are composed of narrow strips of the cytoplasm leaving the large intracellular vacuoles. A short excretory cuticular duct formed by special excretory duct cells connects the glands with the external medium. At the base of the terminal opening a cuticular funnel strengthens the gland termination. At the apex of this funnel a valve prevents back-flow of the extruded secretion. These glands, as other dermal glands of water mites, are thought to play a protective role and react to external stimuli with the help of the hair-like sensilla.  相似文献   

16.
An ultrastructural study of the prostate gland of Fasciola hepatica shows it to be composed of numerous unicellular glands. These gland cells contain an extensive granular endoplasmic reticulum (GER) system parts of which are intimately associated with septum-like invaginations of the plasma membrane extending almost to the nucleus. Also associated with the GER are many Golgi complexes which secrete large electron-lucid carbohydrate-rich secretory vesicles. The secretion passes up the gland ducts along with a very dense granular and fibrillar material. The ducts have a peripheral microtubular skeleton and are tightly bound to the epithelium of the ejaculatory duct by septate desmosomes. Secretory vesicles are stored in the expanded ends of the ducts where they pass through the ejaculatory epithelium and their content is discharged by the bursting of their limiting membrane.  相似文献   

17.
Abstract The ultrastructure of unicellular accessory glands (= prostate glands) and external male ducts of the cestode Cylindrotaenia hickmaniare described. Accessory glands open into the lumen of the external common sperm duct (= external vas deferens). The gland cells contain abundant endoplasmic reticulum, Golgi bodies and secretory bodies, and have elongate necks that pierce the apical cytoplasm of the duct. Cell contact with the apical cytoplasm of the sperm duct is mediated by septate desmosomes. Accessory glands secrete spherical particles, with a diameter of approximately 70 nm, that adhere to spermatozoa. The roles of these accessory glands may relate to activity of the sperm or development of the female system after insemination. Paired sperm ducts arise from testes, and unite to form a common sperm duct. Each duct consists of a tubular anucleate cytoplasmic region which is supported by nucleated cytons that lie sunken in the parenchyma. The apical cytoplasm of the paired sperm ducts (= vasa efferentia) possesses apical microvilli and abundant mitochondria, but few other cytoplasmic features. The apical cytoplasm of the common sperm duct possesses sparse apical microvilli and numerous electronlucent vesicles. The male gonoducts form an elongate syncytium which is markedly polarized along the length of the ducts. The ducts also display apical–basal polarity in that sunken nucleated cytons support the apical cytoplasm which in turn has distinct basal and apical domains.  相似文献   

18.
The submandibular gland of the white-winged vampire bat, Diaemus youngi, was examined by electron microscopy. Unlike typical submandibular glands, those in Diaemus have only one type of secretory cell in their endpieces, namely, serous cells. These serous cells are conventional in structure, with an extensive rough endoplasmic reticulum, scattered dictyosomes, and numerous secretory granules. The endpiece lumina, as well as intercellular canaliculi, are fitted with numerous microvilli, which also are present on the otherwise unremarkable intercalated duct cells. Striated ducts are of conventional morphology, but have a brush border-like array of microvilli on their luminal surface. These cells resemble those in the submandibular gland of the common vampire bat, Desmodus rotundus. The presence of an abundance of microvilli in the salivary glands in the two vampire bat species (and their absence from chiropteran species that consume other types of diets) is a strong indication that these structures play a significant role in dealing with the problems posed by a sanguivorous diet.  相似文献   

19.
The ultrastructure of the female sex pheromone glands in Callosobruchus maculatus (Coleoptera : Bruchidae) were localized using a masking technique, combined with eiectro-antennography and by a comparison of the glandular cells of sexually active (flightless) females and non-sexually active (flight-form) females. Each unicellular gland is an invagination of the integumental membrane capped by a single secretory cell. These glands are situated on the fine intersegmental membrane, which joins the pygidium to the ovipositor. The secretory cells of the glands of active females are characterized by well-developed microvilli, with many elongated mitochondria among the latter. The high metabolic activity of these cells is revealed by the presence of heterogeneous secretion vesicles, some of which contain abundant crystallized material. Deep basal invaginations indicate the uptake of substances from the haemolymph. The receptor canal is a network of fine cuticular filaments which have the same structure regardless of the female's sexual status. Cells from the glands of non-sexually active females are underdeveloped and show no invaginations of the basal membrane and very few microvilli. The localization of these glands was made possible by the use of SEM, TEM and EAG as well as by masking the suspected zones and by comparing females in different physiological states: flightless females, which were sexually active and producing pheromones; and flight-form females, non-sexually active and producing no sex pheromones. Only by adopting such a stringent method was it possible to confirm the function of the glands whose ultrastructure was studied.  相似文献   

20.
The ultrastructure of some integumental glands occurring in the head, thorax and abdomen of K. flavicollis soldiers is described. The secretory units consist of two cells, the canal cell and the secretory cell (this latter filled with secretion granules). A cylindrical and distorted extracellular space, or reservoir, with an irregular outline is lined by short microvilli. The end-apparatus is made up of small overlapping cuticular laminae which in section resemble small wavy rods. The ample distribution of the units has led the authors to consider them dermal glands. Scanning electron micrographs confirm that the glands' activity consists in the secretion of material which then spreads over the surface of the integument. The dissimilar appearance of the secretion granules present in glands of different soldiers suggests that the electron-lucid granules and the granules with fibrils are two completely different secretions at different ages of the animal. The authors do not therefore rule out the hypothesis that these integumental glands may later produce or release pheromones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号