首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100?years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age.  相似文献   

2.
Classic theories of ageing consider extrinsic mortality (EM) a major factor in shaping longevity and ageing, yet most studies of functional ageing focus on species with low EM. This bias may cause overestimation of the influence of senescent declines in performance over condition-dependent mortality on demographic processes across taxa. To simultaneously investigate the roles of functional senescence (FS) and intrinsic, extrinsic and condition-dependent mortality in a species with a high predation risk in nature, we compared age trajectories of body mass (BM) in wild and captive grey mouse lemurs (Microcebus murinus) using longitudinal data (853 individuals followed through adulthood). We found evidence of non-random mortality in both settings. In captivity, the oldest animals showed senescence in their ability to regain lost BM, whereas no evidence of FS was found in the wild. Overall, captive animals lived longer, but a reversed sex bias in lifespan was observed between wild and captive populations. We suggest that even moderately condition-dependent EM may lead to negligible FS in the wild. While high EM may act to reduce the average lifespan, this evolutionary process may be counteracted by the increased fitness of the long-lived, high-quality individuals.  相似文献   

3.
Torres R  Drummond H  Velando A 《PloS one》2011,6(11):e27245
Recent studies of wild populations provide compelling evidence that survival and reproduction decrease with age because of senescence, a decline in functional capacities at old ages. However, in the wild, little is known about effects of parental senescence on offspring quality. We used data from a 21-year study to examine the role of parental age on offspring probability of recruitment in a long-lived bird, the blue-footed booby (Sula nebouxii). Offspring probability of recruiting into the breeding population varied over the life of parents and effects age were similar in mothers and fathers. Offspring recruitment was high when parents were roughly 6-12 years old and low before and after then. Effects of parental age on offspring recruitment varied with lifespan (parental age at last reproduction) and previous breeding experience. Offspring recruitment from young and old parents with long reproductive lifespans was greater than that of offspring from parents with short lifespans at young and old ages. For parents with little previous breeding experience recruitment of offspring decreased with their hatch date, but experienced parents were no similarly affected. We found evidence of terminal effects on offspring recruitment in young parents but not in older parents, suggesting that senescence is more likely a gradual process of deterioration than a process of terminal illness. Failure to recruit probably reflects mortality during the first years after independence but also during the fledgling transition to full independence. Our results show effects of parental age and quality on offspring viability in a long-lived wild vertebrate and support the idea that wild populations are composed of individuals of different quality, and that this individual heterogeneity can influence the dynamics of age-structured populations.  相似文献   

4.
The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects.  相似文献   

5.
Aging refers to a gradual deterioration in function that, over time, leads to increased mortality risk, and declining fertility. This pervasive process occurs in almost all organisms, although some long-lived trees and cold water inhabitants reportedly show insignificant aging. Negligible senescence is characterized by attenuated age-related change in reproductive and physiological functions, as well as no observable age-related gradual increase in mortality rate. It was questioned whether the longest living rodent, the naked mole-rat, met these three strict criteria. Naked mole-rats live in captivity for more than 28.3 years, ∼9 times longer than similar-sized mice. They maintain body composition from 2 to 24 years, and show only slight age-related changes in all physiological and morphological characteristics studied to date. Surprisingly breeding females show no decline in fertility even when well into their third decade of life. Moreover, these animals have never been observed to develop any spontaneous neoplasm. As such they do not show the typical age-associated acceleration in mortality risk that characterizes every other known mammalian species and may therefore be the first reported mammal showing negligible senescence over the majority of their long lifespan. Clearly physiological and biochemical processes in this species have evolved to dramatically extend healthy lifespan. The challenge that lies ahead is to understand what these mechanisms are.  相似文献   

6.
Programmed (adaptive) aging refers to the idea that mammals, including humans and other complex organisms, have evolved mechanisms that purposely cause or allow senescence or otherwise internally limit their lifespans in order to obtain an evolutionary advantage. Until recently, programmed aging had been thought to be theoretically impossible because of the mechanics of the evolution process. However, there is now substantial theoretical and empirical support for the existence of programmed aging in mammals. Therefore, a comprehensive approach to medical research on aging and age-related diseases must consider programmed aging mechanisms and the detailed nature of such mechanisms is of major importance. Theories of externally regulated programmed aging suggest that in mammals and other complex organisms, genetically specified senescence mechanisms detect local or temporary external conditions that affect the optimal lifespan for a species population and can adjust the lifespans of individual members in response. This article describes why lifespan regulation in response to external conditions adds to the evolutionary advantage produced by programmed aging and why a specific externally regulated programmed aging mechanism provides the best match to empirical evidence on mammal senescence.  相似文献   

7.
Mouse lemurs (Microcebus spp.) are an exciting new primate model for understanding human aging and disease. In captivity, Microcebus murinus develops human-like ailments of old age after five years (e.g., neurodegeneration analogous to Alzheimer''s disease) but can live beyond 12 years. It is believed that wild Microcebus follow a similar pattern of senescence observed in captive animals, but that predation limits their lifespan to four years, thus preventing observance of these diseases in the wild. Testing whether this assumption is true is informative about both Microcebus natural history and environmental influences on senescence, leading to interpretation of findings for models of human aging. Additionally, the study of Microcebus longevity provides an opportunity to better understand mechanisms of sex-biased longevity. Longevity is often shorter in males of species with high male-male competition, such as Microcebus, but mouse lemurs are sexually monomorphic, suggesting similar lifespans. We collected individual-based observations of wild brown mouse lemurs (Microcebus rufus) from 2003–2010 to investigate sex-differences in survival and longevity. Fecal testosterone was measured as a potential mechanism of sex-based differences in survival. We used a combination of high-resolution tooth wear techniques, mark-recapture, and hormone enzyme immunoassays. We found no dental or physical signs of senescence in M. rufus as old as eight years (N = 189, ages 1–8, mean = 2.59±1.63 SE), three years older than captive, senescent congeners (M. murinus). Unlike other polygynandrous vertebrates, we found no sex difference in age-dependent survival, nor sex or age differences in testosterone levels. While elevated male testosterone levels have been implicated in shorter lifespans in several species, this is one of the first studies to show equivalent testosterone levels accompanying equivalent lifespans. Future research on captive aged individuals can determine if senescence is partially a condition of their captive environment, and studies controlling for various environmental factors will further our understanding of senescence.  相似文献   

8.
Many long-lived animals do not appear to show classic signs of aging, perhaps because they show negligible senescence until dying from “catastrophic” mortality. Muscle senescence is seldom examined in wild animals, yet decline in muscle function is one of the first signs of aging in many lab animals and humans. Seabirds are an excellent study system for physiological implications of aging because they are long-lived animals that actively forage and reproduce in the wild. Here, we examined linkages between pectoralis muscle fiber structure and age in black-legged kittiwakes (Rissa tridactyla). Pectoralis muscle is the largest organ complex in birds, and responsible for flight and shivering. We obtained and fixed biopsies from wild black-legged kittiwakes of known age. We then measured muscle fiber diameter, myonuclear domain and capillaries per fiber area among birds of differing ages. All muscle parameters were independent of age. Number of nuclei per mm of fiber showed a positive correlation with muscle fiber cross-sectional area, and myonuclear domain increased with muscle fiber diameter. Thus, as muscle fibers increased in size, they may not have recruited satellite cells, increasing the protein turnover load per nuclei. We conclude that senescence in a long-lived bird with an active lifestyle, does not entail mammalian-like changes in muscle structure.  相似文献   

9.
In multicellular organisms, telomerase is required to maintain telomere length in the germline but is dispensable in the soma. Mice, for example, express telomerase in somatic and germline tissues, while humans express telomerase almost exclusively in the germline. As a result, when telomeres of human somatic cells reach a critical length the cells enter irreversible growth arrest called replicative senescence. Replicative senescence is believed to be an anticancer mechanism that limits cell proliferation. The difference between mice and humans led to the hypothesis that repression of telomerase in somatic cells has evolved as a tumor-suppressor adaptation in large, long-lived organisms. We tested whether regulation of telomerase activity coevolves with lifespan and body mass using comparative analysis of 15 rodent species with highly diverse lifespans and body masses. Here we show that telomerase activity does not coevolve with lifespan but instead coevolves with body mass: larger rodents repress telomerase activity in somatic cells. These results suggest that large body mass presents a greater risk of cancer than long lifespan, and large animals evolve repression of telomerase activity to mitigate that risk.  相似文献   

10.
Evolutionary theories of senescence postulate that lifespan is determined by the age-dependent decrease in the effects of natural selection. Factors that influence survival and reproduction at early life stages have a larger impact on fitness than factors that influence later life stages. According to these views, selection for rapid sexual maturation and a steep age-dependent decrease in fitness drive the evolution of short lifespans. Here, we report on the survival trajectory of Nothobranchius furzeri (Pisces: Ciprinodontidae): a member of a group of annual species found in temporary bodies of water whose life expectancy in the wild is limited to a few months. We find that maximum survival of N. furzeri in the laboratory is less than 12 weeks. The temporal trajectory of survival shows an age-dependent increase in the mortality rate that is typical of organisms with defined lifespans. The lifespan of N. furzeri is exceptionally short for a vertebrate: owing to its small size and the possibility of propagation in captivity, N. furzeri could be used as a convenient model for ageing research.  相似文献   

11.
In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra) and extended lifespans (e.g., Bristlecone Pine). Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.  相似文献   

12.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness. Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.  相似文献   

13.
Adult lifespans, age‐specific survival, age‐specific mortality, survival times on paraquat, and survival times on DDT were assayed in seven lines of Drosophila melanogaster, including two genetically heterogeneous wild lines recently collected from nature, and three inbred and recombinant inbred lines derived from an artificial selection experiment for increased lifespan. Survival on paraquat is positively correlated with adult lifespan. DDT resistance is uncorrelated with either paraquat resistance or lifespan. The wild lines are unexceptional with respect to average lifespan, paraquat resistance, age‐specific survivorship, and leveling off of mortality rates at advanced ages, but have high levels of DDT resistance. Cluster analysis groups the wild lines with three unselected laboratory stocks in one cluster, while two long‐lived elite recombinant inbred lines form a second cluster. Long‐lived laboratory‐adapted lines are quantitatively differentiated from the wild stocks, both with respect to average adult lifespans and resistance to an oxidizing agent. We reject the ‘recovery’ hypothesis, which proposes that Drosophila artificially selected for long life have phenotypes that merely recover the wild state. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Gardner MP  Gems D  Viney ME 《Aging cell》2006,5(4):315-323
Aging evolves as the result of weakened selection against late-acting deleterious alleles due, for example, to extrinsic mortality. Comparative studies of aging support this evolutionary theory, but details of the genetic mechanisms by which lifespan evolves remain unclear. We have studied aging in an unusual nematode, Strongyloides ratti, to gain insight into the nature of these mechanisms, in this first detailed examination of aging in a parasitic nematode. S. ratti has distinct parasitic and free-living adults, living in the rat small intestine and the soil, respectively. We have observed reproductive and demographic aging in parasitic adults, with a maximum lifespan of 403 days. By contrast the maximum lifespan of free-living adults is only 5 days. Thus, the two adults of S. ratti have evolved strikingly different rates of aging. Parasitic nematode species are frequently longer-lived than free-living species, presumably reflecting different extrinsic mortality rates in their respective niches. Parasitic and free-living female S. ratti are morphologically different, yet genetically identical. Thus, the 80-fold difference in their lifespans, the greatest plasticity in aging yet reported, must largely reflect evolved differences in gene expression. This suggests that interspecific differences in lifespan may evolve via similar mechanisms.  相似文献   

15.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history.

Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness.

Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.

  相似文献   

16.
Stress and low socioeconomic status in humans confer increased vulnerability to morbidity and mortality. However, this association is not mechanistically understood nor has its causation been explored in animal models thus far. Recently, cellular senescence has been suggested as a potential mechanism linking lifelong stress to age‐related diseases and shorter life expectancy in humans. Here, we established a causal role for lifelong social stress on shortening lifespan and increasing the risk of cardiovascular disease in mice. Specifically, we developed a lifelong chronic psychosocial stress model in which male mouse aggressive behavior is used to study the impact of negative social confrontations on healthspan and lifespan. C57BL/6J mice identified through unbiased cluster analysis for receiving high while exhibiting low aggression, or identified as subordinate based on an ethologic criterion, had lower median and maximal lifespan, and developed earlier onset of several organ pathologies in the presence of a cellular senescence signature. Critically, subordinate mice developed spontaneous early‐stage atherosclerotic lesions of the aortic sinuses characterized by significant immune cells infiltration and sporadic rupture and calcification, none of which was found in dominant subjects. In conclusion, we present here the first rodent model to study and mechanistically dissect the impact of chronic stress on lifespan and disease of aging. These data highlight a conserved role for social stress and low social status on shortening lifespan and increasing the risk of cardiovascular disease in mammals and identify a potential mechanistic link for this complex phenomenon.  相似文献   

17.
The genetic basis for aging is being intensely investigated in a variety of model systems. Much of the focus in Drosophila has been on the molecular-genetic determinants of lifespan, whereas the molecular-genetic basis for age-related functional declines has been less vigorously explored. We evaluated behavioural aging and lifespan in flies harbouring loss-of-function mutations in myospheroid, the gene that encodes betaPS, a beta integrin. Integrins are adhesion molecules that regulate a number of cellular processes and developmental events. Their role in aging, however, has received limited attention. We report here that age-related declines in locomotor activity are ameliorated and that mean lifespan is increased in myospheroid mutants. The delayed functional senescence and altered mortality in myospheroid flies are independent of changes in body size, reproduction or stress resistance. Our data indicate that functional senescence and age-dependent mortality are influenced by beta integrins in Drosophila.  相似文献   

18.
利用氧化剂甲基紫精筛选拟南芥寿限延长突变体   总被引:4,自引:0,他引:4  
在模式动物中的研究表明,寿限延长与氧化胁迫耐受能力密切有关;在模式植物拟南芥中也发现晚花突变体具有更强的抗氧化胁迫能力,但迄今为止未见有关拟南芥寿限延长突变体的研究报道。本文建立了用氧化剂甲基紫精筛选寿限延长突变体的方法,并对用该方法从经快中子诱变的拟南芥Columbia生态型M2代群体中筛选获得的突变体SFNA-9—4进行分析,发现该突变体的抗氧化胁迫能力和寿限均显著增加。由此说明,用该方法筛选拟南芥寿限延长突变体是可行的。  相似文献   

19.

Background

Laboratory conditions nullify the extrinsic factors that determine the wild expected lifespan and release the intrinsic or potential lifespan. Thus, wild animals reared in a laboratory often show an increased lifespan, and consequently an increased senescence phase. Senescence is associated with a broad suite of physiological changes, including a decreased responsiveness of the circadian system. The time-keeping hormone melatonin, an important chemical player in this system, is suspected to have an anti-aging role. The Greater White-toothed shrew Crocidura russula is an ideal study model to address questions related to aging and associated changes in biological functions: its lifespan is short and is substantially increased in captivity; daily and seasonal rhythms, while very marked the first year of life, are dramatically altered during the senescence process which starts during the second year. Here we report on an investigation of the effects of melatonin administration on locomotor activity of aging shrews.

Methodology/Principal Findings

1) The diel fluctuations of melatonin levels in young, adult and aging shrews were quantified in the pineal gland and plasma. In both, a marked diel rhythm (low diurnal concentration; high nocturnal concentration) was present in young animals but then decreased in adults, and, as a result of a loss in the nocturnal production, was absent in old animals. 2) Daily locomotor activity rhythm was monitored in pre-senescent animals that had received either a subcutaneous melatonin implant, an empty implant or no implant at all. In non-implanted and sham-implanted shrews, the rhythm was well marked in adults. A marked degradation in both period and amplitude, however, started after the age of 14–16 months. This pattern was considerably delayed in melatonin-implanted shrews who maintained the daily rhythm for significantly longer.

Conclusions

This is the first long term study (>500 days observation of the same individuals) that investigates the effects of continuous melatonin delivery. As such, it sheds new light on the putative anti-aging role of melatonin by demonstrating that continuous melatonin administration delays the onset of senescence. In addition, the shrew appears to be a promising mammalian model for elucidating the precise relationships between melatonin and aging.  相似文献   

20.
在模式动物中的研究表明,寿限延长与氧化胁迫耐受能力密切有关;在模式植物拟南芥中也发现晚花突变体具有更强的抗氧化胁迫能力,但迄今为止未见有关拟南芥寿限延长突变体的研究报道。本文建立了用氧化剂甲基紫精筛选寿限延长突变体的方法,并对用该方法从经快中子诱变的拟南芥Columbia生态型M_2代群体中筛选获得的突变体SFNA-9-4进行分析,发现该突变体的抗氧化胁迫能力和寿限均显著增加。由此说明,用该方法筛选拟南芥寿限延长突变体是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号