首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frog sounds involve expulsion of air through the larynx. Inmating, release, rain, and territorial calls, the air vibratesvocal cords and/or arytenoid cartilages. Sound is amplifiedand radiated by the distended buccal cavity and vocal sacs.Distress calls are emitted with open mouth, with minimum laryngealmodulation. The trunk is filled by inflation cycles, but airis driven out by synchronized contractions of the body wallmusculature. The pressure levels are more than five times thoseduring ventilation. In the release call of Bufo valliceps the dilatators and constrictorsof the larynx fire simultaneously keeping the larynx closed.As the pulmonary pressure reaches a peak they cease firing.The arytenoids then separate and vibrate, as do the vocal cords.The dilatators terminate the sound pulse by pulling vibratorsout of the air stream, hence the very sharp termination. Prolongedrelease call sequences include interpulse Teinflations thatreturn air from buccal cavity to lung. Frogs apparently evolved from amphibians too small to use aspirationbreathing. Vocalization represented a critical factor in theirsocial organization and its importance locked these animalsinto reliance upon pulse-pumping rather than the more efficientaspiration breathing.  相似文献   

2.
Movement and sound generation by the toadfish swimbladder   总被引:4,自引:0,他引:4  
Although sound-producing (sonic) muscles attached to fish swimbladders are the fastest known vertebrate muscles, the functional requirement for such extreme speed has never been addressed. We measured movement of the swimbladder caused by sonic muscle stimulation in the oyster toadfish Opsanus tau and related it to major features of the sound waveform. The movement pattern is complex and produces sound inefficiently because the sides and bottom of the bladder move in opposite in and out directions, and both movement and sound decay rapidly. Sound amplitude is related to speed of swimbladder movement, and slow movements do not produce perceptible sound. Peak sound amplitude overlaps fundamental frequencies of the male's mating call because of muscle mechanics and not the natural frequency of the bladder. These findings suggest that rapid muscle speed evolved to generate sound from an inefficient highly damped system.  相似文献   

3.
Summary The vocal organ (syrinx) of a bird may contain either extrinsic muscles alone or both extrinsic and intrinsic muscles. The former arise and insert on the trachea and affect the syrinx only indirectly; the latter also arise on the trachea but insert directly on syringeal elements. It is widely supposed that syringeal muscles can affect modulations of the sounds the birds make, and further, that the intrinsic muscles are closely associated with such a function. However, the exact roles of the two groups of muscles have not been directly observed.The psittacid syrinx, which has one (for practical purposes) pair of extrinsic and two pairs of intrinsic muscles, is about as simple as one can find in birds capable of uttering a wide variety of sounds. We have taken electromyograms from the syringeal muscles of five species of parrots. In all of these, the extrinsic sternotrachealis showed the simple activation pattern activity previously described from several non-passerine species that possess only extrinsic muscles. The intrinsic muscles, however, showed a variety of activity patterns. The relatively simple call of Cyanoliseus patagonus again showed the simple activation pattern. In Myiopsitta monachus, the muscles showed a string of pulses that matched to pulses of sound in a strongly amplitude modulated call. Agapornis roseicollis used at least two distinct patterns, each associated with a different call.The results are consistent with an hypothesis that, because of their indirect attachment of the syrinx, extrinsic muscles are poorly suited to the production of precise, rapid changes in syringeal action, but rather will function in an on-off switch capacity. Intrinsic muscles are so situated that, given proper neurological stimulus, they can effect a variety of alterations in the sound pattern. Hence, intrinsic muscles are necessary for the evolution of large vocabularies and variable vocal behavior.  相似文献   

4.
ABSTRACT

The substitution method was adopted from industrial acoustics (Francois and de Montussaint 1972) to “eliminate the influence of the environment” on measurements of the amplitude of vocalizations given by blue monkeysCercopithecus mitis and grey-cheeked mangabeysCercocebus albigena. Measurements were conducted of sound power and sound pressure level of representative utterances. Monkey vocal radiation patterns were also measured. The results showed that vocal amplitude ranged from 62 dB to 100 dB in sound pressure (re 1 pw). At a distance of 2 m, the loudest calls approached an amplitude of 110 dB SPL, a level about equal to the loudest human yell. The measurements of call amplitude conducted here exceeded those derived from the field by approximately 10 dB. It was shown that the discrepancy in amplitude between these laboratory based measurements and earlier measurements conducted under field conditions (Waser and Waser 1977) was probably due to destructive interference between the direct wave and the “ground wave”, a phase shifted wave reflected from the ground. Measurements of radiation patterns of primate vocalizations showed that, like human speech, directivity was a function of frequency, with high-frequency components being radiated more directionally than lower-frequency components. However, primate utterances were in general radiated more omnidirectionally than was human speech.  相似文献   

5.
Natale, G.S., Alcalde, L., Herrera, R., Cajade, R., Schaefer, E.F., Marangoni, F. and Trudeau, V.L. 2011. Underwater acoustic communication in the macrophagic carnivorous larvae of Ceratophrys ornata (Anura: Ceratophryidae). —Acta Zoologica (Stockholm) 92 : 46–53. We provide the first evidence for sound production by anuran larvae. In this study, we describe the sounds, their context‐specific emission and the structures related to sound production of the carnivorous larvae of Ceratophrys ornata (Amphibia, Anura, Ceratophryidae). Tadpoles emit a brief, clear and very audible metallic‐like sound that consists of a short train of notes that occur at all stages of larval development. Tadpoles make sound only when a conspecific tadpole is preying upon it or when touched by an object. Ceratophrys ornata larvae possess the basic required anatomical structures for sound production via expulsion of atmospheric air from the lungs through the open soft‐tissue glottis. The glottis is opened and closed via the larval laryngeal muscles (constrictor laryngis and dilatator laryngis). The arytenoid cartilages appear at stage 40 and the cricoid cartilage does at stage 43. Adult laryngeal muscles differentiate from the larval ones at stage 46 together with the vocal sac formation from the adult interhyoideus muscle. We demonstrate (n = 2160 conspecific predator–prey interactions) that larval sounds occur always under predatory attack, probably serving to diminish the chances of cannibalism. These data raise the possibility that other macrophagic carnivorous anuran larvae may produce sound.  相似文献   

6.
Summary Doppler shift compensation behaviour in horseshoe bats, Rhinolophus rouxi, was used to test the interference of pure tones and narrow band noise with compensation performance. The distortions in Doppler shift compensation to sinusoidally frequency shifted echoes (modulation frequency: 0.1 Hz, maximum frequency shift: 3 kHz) consisted of a reduced compensation amplitude and/or a shift of the emitted frequency to lower frequencies (Fig. 1).Pure tones at frequencies between 200 and 900 Hz above the bat's resting frequency (RF) disturbed the Doppler shift compensation, with a maximum of intererence between 400 and 550 Hz (Fig. 2). Minimum duration of pure tones for interference was 20 ms and durations above 40 ms were most effective (Fig. 3). Interfering pure tones arriving later than about 10 ms after the onset of the echolocation call showed markedly reduced interference (Fig. 4). Doppler shift compensation was affected by pure tones at the optimum interfering frequency with sound pressure levels down to –48 dB rel the intensity level of the emitted call (Figs. 5, 6).Narrow bandwidth noise (bandwidth from ± 100 Hz to ± 800 Hz) disturbed Doppler shift compensation at carrier frequencies between –250 Hz below and 800 Hz above RF with a maximum of interference between 250 and 500 Hz above resting frequency (Fig. 7). The duration and delay of the noise had similar influences on interference with Doppler shift compensation as did pure tones (Figs. 8, 9). Intensity dependence for noise interference was more variable than for pure tones (-32 dB to -45 dB rel emitted sound pressure level, Fig. 10).The temporal and spectral gating in Doppler shift compensation behaviour is discussed as an effective mechanism for clutter rejection by improving the processing of frequency and amplitude transients in the echoes of horseshoe bats.Abbreviations CF constant frequency - FM frequency modulation - RF resting frequency - SPL sound pressure level  相似文献   

7.
Analysis of sound pressure data obtained from audio recordings of night-time Eleutherodactylus coqui chorusing was used to estimate population density of calling male coqui frogs in the major Hawaiian island populations. Study plots 400 m2 in size (20 by 20 m; n = 32) were established on the islands of Hawaii and Maui to provide venues for field counting calling male frogs to investigate the ground truth relationship with the recorded sound pressure data. Male coqui frogs emit a two-note ‘co-qui’ advertisement call at regular intervals. Exploiting the temperature-related and relatively consistent male coqui call repetition rate and the average emitted ‘co’ call sound pressure level (70.4 dB at 1 m), cue counts obtained from a correlation process available in the program Raven were also used to estimate the density of calling male coqui. The study methodology included comparing linear regression results between the field-counted frogs and the number of frogs obtained from the cue count method. Both methods revealed a linear relationship between calling male population density and associated average sound pressure of the resulting chorus.  相似文献   

8.
Acoustic communication in spring peepers   总被引:1,自引:0,他引:1  
Summary In the previous study (Wilczynski et al. 1984) we found that neurons in the auditory nerve of female spring peepers (Hyla crucifer) are tuned to frequencies in the male advertisement call, whereas auditory units in male peepers are mismatched in spectral sensitivity to their call. We investigated, in the present report, behavioral consequences of this sexual dimorphism in auditory sensitivity. Call amplitude, rate of call attenuation with environmental transmission, and the amplitude of ambient noise were measured and used to compute the active space of this signal for males and females. The effect of calling height upon active space was considered. Measurements of active space were compared with intermale distances within breeding choruses.Results indicate that active space of the advertisement call for females is as much as 6 times greater than that for males, and varies directly with the height above ground from which males call. Observed maximum intermale distances correspond closely to the active space of the call for this sex. This suggests that males space themselves so that the amplitude of a neighbor's calls approximates their auditory neural threshold to call frequencies. By this proximal mechanism, peepers maximize intermale distance but ensure that they remain within a chorus.Abbreviation dB SPL decibels sound pressure levelre: 20 Pa  相似文献   

9.
The mechanism of respiration in the bullfrog has been analyzed by means of pressure recordings from the buccal cavity, the lungs and the abdominal cavity, by cinematography and cinefluorography, and by electromyography of buccal, laryngeal and abdominal muscles. Gas flow was investigated by putting frogs in atmospheres of changing argon and nitrogen content and monitoring the concentration of the nostril efflux. Three kinds of cyclical phenomena were found. (1) Oscillatory cycles consist of rhythmical raising and lowering of the floor of the mouth, with open nares. They have a definite respiratory function in introducing fresh air into the buccal cavity. (2) Ventilatory cycles involve opening and closing of the glottis and nares and renewal of a portion of the pulmonary gas. More muscles are involved and the pattern of muscular activity is more complex than in the oscillatory cycles. (3) Inflation cycles consist of a series of ventilation cycles, interrupted by an apneic pause. The intensity of the ventilatory cycles increases before this pause and decreases immediately thereafter. This results in a stepwise increase in pulmonary pressure, to a plateau (coincident with the pause) followed by a sudden or stepwise decrease. The respiratory mechanism depends on the activity of a buccal force pump, which determines pulmonary pressure whose level is always slightly less than the peak pressure values of the ventilation cycles. The elevated pulmonary pressure is responsible for the expulsion of pulmonary gas during the second phase of the next ventilation cycle. This pressure is maintained by the elastic fibers (and the smooth masculature) of the lungs.  相似文献   

10.
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule.  相似文献   

11.
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.  相似文献   

12.

Background

Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held) and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae) that represents an intermediate condition in the evolution of super-fast sonic muscles.

Results

The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1) causing the tendon and bladder to snap back (part 2) generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals.

Conclusion

The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.  相似文献   

13.
Respiratory abdominal movements during vocalization were measured in awake squirrel monkeys during spontaneous and playback-induced vocal activity. Large vocalization-correlated respiratory movements (VCRM) starting before vocalization were observed during several call types, such as peeping, trilling, cackling and err-chuck. Purring, in contrast, was accompanied by only small VCRM that started late after vocal onset. VCRM during trilling, a call with marked frequency modulation, showed a modulation in the rhythm of the frequency changes. A correlation with amplitude modulation was also present but more variable. As high frequencies need a higher lung pressure for production than low frequencies, the modulation of VCRM seems to serve to optimize the lung pressure in relation to the vocalization frequency. The modulation, furthermore, may act as a mechanism to produce different trill variants. During err-chucks and staccato peeps, which show a large amplitude modulation, a non-modulated VCRM occurred. This indicates the existence of a laryngeal amplitude-controlling mechanism that is independent of respiration.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

14.
Under physiological conditions, the laryngeal synapse of male Xenopus laevis exhibits marked facilitation during repetitive nerve stimulation. The male laryngeal synapse is weak and requires facilitation to produce muscle action potentials and ultimately sound. The female laryngeal synapse is strong: muscle contractions are produced to single nerve stimuli. We sought to determine if laryngeal synapses of males and females also differ in their ability to facilitate. To measure facilitation, laryngeal muscle action potentials were suppressed either postsynaptically by bathing the preparation in saline containing curare or presynaptically by bathing the preparation in reduced calcium/elevated magnesium saline. Facilitation of postsynaptic potential amplitude or quantal content in response to paired pulses was measured in male and female larynges: there is no sex difference in paired pulse facilitation. Facilitation in response to trains of stimuli, in curare-blocked preparations, increased and reached plateau values more rapidly in females than in males, although the facilitation between the last and first pulses in the train was the same in the sexes. Thus, the sexually differentiated behavior of this synapse is controlled more by a sex difference in synaptic strength than by a sex difference in the ability to facilitate. Accepted: 14 June 1997  相似文献   

15.
In order to elucidate the neural basis for lung ventilation in the frog, we have investigated the efferent neural activity to oropharyngeal muscles in the decerebrate, paralyzed, unanesthetized bullfrog, Rana catesbeiana. Efferent motor output was recorded from the mandibular branch of the trigeminal (Vmd), the laryngeal branch of the vagus (Xl), and the main and sternohyoid branches of the hypoglossal nerve (Hm and Hsh, respectively). Two types of rhythmic bursting outputs were observed: (1) a high-frequency, low-amplitude, reciprocal oscillation between Vmd, a buccal levator nerve, and Hsh, a buccal depressor nerve; and (2) a low-frequency, high amplitude, synchronous bursting of Vmd, Hm, Hsh, and Xl. The first type is inferred to represent fictive oropharyngeal ventilation. The second type of burst was divided into four intervals: (a)augmenting acitivity of Hsh; (b) activation of Xl with continued activation of Hsh; (c) activation of Vmd and Hm (a buccal levator nerve), continued activation of Xl, and termination of Hsh activity; and (d) waning activity in Vmd and Hm associated with a prominent second wave in Xl. This coordinated activity is inferred to represent fictive pulmonary ventilation because the neurograms in these four intervals correspond closely EMGs and neurograms recorded in the intact frog during the four phases of pulmonary ventilation, namely, buccal depression, pulmonary expiration, pulmonary inspiration, and glottal closure. Hypercapnia, vagotomy, and cutaneus pinching enhanced the high-amplitude, low-frequency rhythm, but not the low-amplitude, high-frequency oscillation. Lung inflation generally inhibited the former and not the latter, but in some cases lung inflation stimulated pulmonary ventilation. We conclude that oropharyngeal and pulmonary ventilation of the frog are produced by one or, possibly, two intrinsically active generators. 1994 John Wiley & Sons, Inc.  相似文献   

16.
In Xenopus laevis frogs, sex differences in adult laryngeal synapses contribute to sex differences in vocal behavior. This study explores the development of sex differences in types of neuromuscular synapses and the development and hormone regulation of sex differences in transmitter release. Synapses in the juvenile larynx have characteristics not found in adults: juvenile muscle fibers can produce subthreshold or suprathreshold potentials in response to the same strength of nerve stimulation and can also produce multiple spikes to a single nerve stimulus. Juvenile laryngeal muscle also contains the same synapse types (I, II, and III) as are found in adult laryngeal muscle. The distribution of laryngeal synapse types in juveniles is less sexually dimorphic than the distribution in adults. Analysis of quantal content indicates that laryngeal synapses characteristically release low amounts of transmitter prior to sexual differentiation. Quantal content values from male and female juveniles are similar to values for adult males and are lower than values for adult females. When juveniles are gonadectomized and treated with exogenous estrogen, quantal content values increase significantly, suggesting that this hormone may increase transmitter release at laryngeal synapses during development. Gonadectomy alone does not affect quantal content of laryngeal synapses in either sex. Androgen treatment decreases quantal content in juvenile females but not males; the effect is opposite to and smaller than that of estrogen. Thus, muscle fiber responses to nerve stimulation and transmitter release are not sexually dimorphic in juvenile larynges. Transmitter release is strengthened, or feminized, by the administration of estradiol, an ovarian steroid hormone. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
In mammals, birds and amphibians the neural pathways controlling sound production descend from higher centers in the forebrain, whereas in fishes only brainstem and spinal centers have been explicitly implicated in sound production. We now report that electrical stimulation of the forebrain of the oyster toadfish (Opsanus tau) readily evokes both the agonistic grunt and the courtship boatwhistle. Boatwhistles are more realistic than ones previously evoked from lower centers. Positive stimulation sites are localized in the preoptic area (nucleus preopticus parvocellularis anterior) and the supracommissural nucleus of the ventral telencephalon, a likely homologue of the amygdala. Both sites contain gonadal steroid-concentrating neurons and play a central role in fish courtship behavior. Evoked sounds form a continuum from knock grunts, burst grunts, transition boatwhistles to complete boatwhistles; sound pressure level (SPL), fundamental frequency and duration increase consistently within the continuum. For all sound types, SPLs exhibit the smallest variation (coefficients of variation of 2.7 to 5.7%), fundamental frequency is intermediate (5 to 13%) and durations vary most widely (18 to 60%). Boatwhistles, with the smallest variation and greatest amplitude, are likely generated by a maximal output of the CNS and sonic muscles. Grunt SPLs however, vary over a range of 26 dB for all fish and by as much as 18 dB in an individual, suggesting recruitment of variable numbers of motor units despite electrical coupling within the sonic motor nucleus.Abbreviations AC anterior commissure - CNS central nervous system - DHT dihydrotestosterone - Dm medial nucleus of dorsal telenecphalon - DTAM dorsal tegmental area of medulla - E estrogen - HRP horseradish peroxidase - PM nucleus praeopticus magnocellularis - POA preoptic area - PPa nucleus praeopticus parvocellularis anterior - SMA sonic motor area - SMN sonic motor nucleus - SPL sound pressure level - T testosterone - VS supracommissural nucleus of ventral telencephalon - Vv ventral nucleus of ventral telencephalon  相似文献   

18.
After sections of left or right tracheosyringeal nerve (NXIIts), greenfinches may repeat everyday calls, with no effect on temporal properties. It is suggested that either side of syrinx may produce sound alone and ipsilateral innerration of NXIIts for the syringeal muscles. After section of left NXIIts, the bird produces the vocal pattern of partial tone increase, and effects on the sound intensity and sentence length average 1.4 and 2.8 times those after section of right NXIIts, suggesting that the innervation of NXIIts has left side dominance. After bilateral section of NXIIts, the call rhythm in company with expiratory motions is 98–146 times/min, on an average, and lose all sentence types and syllable structure of normal call. But the call spectra produced by tympaniform membrane vibrations without innervation still reserve frequency components similar to the tonic frequency and harmonics of normal calls.  相似文献   

19.
Summary South American male toads Bufo chilensis emit a release call in contact with other individuals and a soft amplectic call, B. spinulosus males emit a release call while isolated in breeding areas, and B. arenarum produces a release call plus an intense mating call. Release calls of the 3 species measure 72–86 dB SPL RMS at 20 cm in front of the animal and the mating call of B. arenarum is 84–87 dB SPL at 4 m.Audiograms obtained with multiunit recordings in the torus semicircularis (TS) show a low frequency region (LFR), centered at 352, 356 and 491 Hz, and a high frequency region (HFR), centered at 1199, 1161 and 1423 Hz, in B. chilensis, B. spinulosus and B. arenarum, respectively. Center frequencies (CFs) in the HFR are in gross correspondence with average dominant frequencies (DFs) of the vocalizations of these species. Best thresholds (BTs) in the HFR are similar between B. chilensis and B. arenarum while in B. spinulosus average BTs are 10.8 and 13.5 dB higher, respectively. The similar auditory thresholds between B. chilensis and B. arenarum denote a conservative nature of auditory sensitivity among these anura.Abbreviations AP amphibian papilla - BP basilar papilla - BT best threshold - CF center frequency - DF dominant frequency - HFR high frequency region - LFR low frequency region - TS torus semi-circularis - SPL sound pressure level  相似文献   

20.
We quantified crepuscular variation in the emission rate and call properties of the boatwhistle advertisement call of Gulf toadfish, Opsanus beta, from a field recording of a natural population of nesting males in the Florida Keys. Their calls are more variable and complex than previously reported. A call typically starts with a grunt followed by one to five tonal boop notes (typically two or three) and lasts for over a second. The first boop is considerably longer than later ones, and intervals between boops are relatively constant until the final interval, which approximately doubles in duration. Positions of fish are fixed and calls are sufficiently variable that we could discern individual callers in field recordings. Calling rate increases after sunset when males tend to produce shorter calls with fewer notes. Analysis by number of notes per call indicates some individuals decrease the number of initial grunts and the duration of the first note, but most of the decrease results from fewer notes. To our knowledge this sort of call plasticity has not been demonstrated before in fishes. We suggest that call shortening lowers the chances of overlapping calls of other males and that the small amount of time actually spent producing sound (total on time) is an adaptation to prevent fatigue in sonic muscles adapted for speed but not endurance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号